Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 989 - 998

 

SYNTHESIS AND CHARACTERIZATION OF NEOPENTYLGLYCOL ESTER AS BIOLUBRICANT BASE STOCK FROM PALM OIL FATTY ACIDS

 

(Sintesis dan Pencirian Ester Neopentilglikol Sebagai Stok Asas Biopelincir

daripada Asid Lemak Minyak Sawit)

 

Nurazira Mohd Nor1* and Jumat Salimon2

 

1MaterOleo Research Group, Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan,

Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

2Department of Chemical Sciences,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia


*Corresponding author: nurazira@uitm.edu.my

 

 

Received: 17 May 2022; Accepted: 6 August 2022; Published:  30 October 2022

 

 

Abstract

Palm oil is one of the potential renewable resources in biolubricant production. However, the direct application of palm oil as a biolubricant base stock is restricted due to some performance limitations such as low oxidative stability. It is due to the presence of oxidation active site β-hydrogen in a glycerol backbone structure. This oxidative drawback can be overcome by molecule structural redesign through a chemical modification process such as esterification with polyhydric alcohol. The esterification of palm oil fatty acids (POFAs) with neopentylglycol (NPG) was carried out in a mole ratio of  2:1, 1% of sulphuric acid, reaction temperature of 145 °C and reaction time of 4.56 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the ester composition in Neopentylglycol Diester (NPGDE). The structure of NPGDE was confirmed by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy. Results showed that the percentage yield of NPGDE was 90% and NPGDE existed in liquid form at room temperature. NPGDE was successfully synthesised with 100% composition of diesters. The existence of the ester functional group is evidenced by FTIR at 1738 cm-1, the chemical shift of 1H NMR at 2.29-2.33 ppm and 13C NMR at 173.71 ppm. Physicochemical properties analysis showed that NPGDE has oxidative stability at 184 °C, pour point at 10 °C, flash point at 235 °C and 160-viscosity index which makes NPGDE plausible to be used in lubrication applications.

 

Keywords: esterification, neopentylglycol, oxidative stability, palm oil fatty acids

 

Abstrak

Minyak sawit merupakan salah satu sumber boleh diperbaharui yang berpotensi untuk digunakan dalam penghasilan biopelincir. Walau bagaimanapun, penggunaan minyak sawit secara terus sebagai stok asas biopelincir adalah terhad disebabkan oleh had prestasi seperti kestabilan oksidatif yang rendah. Ini disebabkan oleh kehadiran tapak aktif pengoksidaan β-hidrogen dalam struktur tulang belakang gliserol. Kelemahan oksidatif ini boleh diatasi dengan melakukan ubahsuai struktur molekul melalui proses pengubahsuaian kimia seperti pengesteran dengan alkohol polihidrik. Pengesteran asid lemak minyak sawit (POFAs) dengan neopentilglikol (NPG) telah dijalankan pada nisbah mol 2:1, 1% asid sulfurik, suhu tindak balas 145 °C dan masa tindak balas 4.56 jam. Kromatografi gas dengan pengesan nyala pengionan (GC-FID) digunakan untuk menentukan komposisi ester dalam Diester Neopentilglikol (NPGDE). Struktur NPGDE disahkan dengan menggunakan spektroskopi infra-merah transformasi Fourier (FTIR), resonans magnetik nuklear proton dan karbon (1H-NMR dan 13C-NMR). Keputusan menunjukkan bahawa peratusan hasil NPGDE ialah 90% dan NPGDE wujud dalam bentuk cecair pada suhu bilik. NPGDE telah berjaya disintesis dengan 100% komposisi diester. Kehadiran kumpulan berfungsi ester dibuktikan melalui FTIR pada 1738 cm-1, anjakan kimia 1H NMR pada 2.29-2.33 ppm dan 13C NMR pada 173.71 ppm. Analisis sifat fizikokimia menunjukkan bahawa NPGDE mempunyai kestabilan oksidatif pada 184 °C, takat tuang pada 10 °C, takat kilat pada 235 °C dan indeks kelikatan 160 yang menjadikan NPGDE sesuai untuk digunakan dalam aplikasi pelinciran.

 

Kata kunci: pengesteran, neopentilglikol, kestabilan oksidatif, asid lemak minyak sawit

 


References

1.      Salimon, J. and Salih, N. (2009). Oleic Acid Diesters: Synthesis, characterization and low temperature  properties. European Journal of Scientific Research, 32(2): 216-222.

2.      Salimon, J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15: 195-201.

3       Farhoosh, R., Einafshar, S.  and Sharayei, P. (2009). The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chemistry, 115: 933-938.

4.      Erhan, S. Z. and Asadauskas, S. (2000). Lubricant basestocks from vegetable oils. Industrial Crops and Products,11: 277-282.

5.      Cerretani, L., Bendini, A., Estrada, M. T. R., Vittadini, E. and Chiavaro, E. (2009). Microwave heating of different commercial categories of olive oil: Part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chemistry, 115:1381-1388.

6.      Moser, B. R., Sharma, B. K., Doll, K. M. and Erhan, S. Z. (2007). Diesters from oleic acid: Synthesis, low temperature properties and oxidative stability. Journal of the American Oil Chemists' Society, 84: 675-680.

7.      Salimon, J. and Salih, N. (2009). Substituted esters of octadecanoic acid as potential biolubricants. European Journal of Scientific Research, 31(2): 273-279.

8.      Nirmal, V. P. and Dineshbabu, D. (2015). Performance and emission of pongamia pinnata oil as a lubricant in diesel engine. International Journal of Innovative Research in Science, Engineering and Technology, 4(2):435-441.

9.      Salih, N. and Salimon, J. (2021). A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Research in Applied Chemistry, 11(5): 13303-13327.

10.    Nor, N. M. and Salimon, J. (2022). Synthesis of green- renewable biolubricant base stock from Malaysia palm oil. Malaysian Journal of Analytical Sciences, 26(3): 492-506

11.    Masood, H., Yunus, R., Choong, T. S. Y., Rashid, U. and Yap, Y. H. T. (2012). Synthesis and characterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. Applied Catalyst A: General, 425-426: 184-290.

12.    Wu, X., Zhang, X., Yang, S., Chen, H. and Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant.  Journal of the American Oil Chemists Society, 77: 561-563.

13.    Fox, N. J. and Stachowiak, G. W. (2007). Vegetable oil-based lubricants-a review of oxidation. Journal of Tribology International, 40: 1035-1046.

14.    Leung, D. Y. C, Wu, X. and Leung, M. K. M. (2010). A review of biodiesel production using catalyzed transesterification. Applied Energy, 87:1083-1095.

15.    Sripada, P. K., Sharma, R. V. and Dalai, A, K. (2013). Comparative study of tribological properties of trimethylolpropane-based biolubricant derived from methyl oleate and canola biodiesel. Industrial Crops and Products, 50: 95-103.

16.    Wilson, B. (1998). Lubricants and functional fluids from renewable sources. Industrial Lubrication and Tribology, 50: 6-15.

17.    Nor, M. N., Derawi, D. and Salimon, J. (2017). Chemical modification of epoxidized palm oil for biolubricant application. Malaysian Journal of Analytical Sciences, 21(6): 1423-1431.

18.    Nor, M. N., Derawi, D. and Salimon, J. (2018). The optimization of RBD palm oil epoxidation process using d-optimal design. Sains Malaysiana, 47(7):1359-1367.

19.    Yunus, R., FakhrulRazi, T. L., OoiI, S. E., Iyuke. and A. Idris. (2003). Development of optimum synthesis method for transesterification of palm oil methyl esters and trimethylolpropane to environmentally acceptable palm oil based lubricants. Journal of Oil Palm Research, 15: 35-41.

20.    Sulaiman, S. Z., Chuah, A. L. and Fakhru`I-Razi, A. (2007). Batch production of trimetylolpropane ester from  palm oil as lubricant base stock.  Journal of Applied Sciences, 7: 2002-2005.

21.    Salih, N., Salimon, J. and Jantan, F. N. (2013). Synthesis and characterization of palm kernel oil based  trimethylolpropane ester.  Asian Journal of Chemistry, 25(17): 9751-9754.

22.    Aziz, N. A. M., Yunus, R., Rashid, U. and Syam, A. M. (2014). Application of response surface methodology (RSM) for optimizing the palm-based pentaerythritol ester synthesis. Industrial Crops and Products, 62: 305-312.

23.    Rajaendran, V., Salimon, J. and Yusop, R. M. (2016). Synthesis and characterization of epoxidized neopentylglycol dioleate as an intermediate of biolubricant. Malaysian Journal of Analytical Sciences, 20(6): 1329-1337.

24.    Nor, M. N., Derawi, D. and Salimon, J.  (2019). Esterification and evaluation of palm oil as biolubricant base stock. Malaysian Journal of Chemistry, 21(2): 28-35.

25.    Nadkarni, R. A. (2007). Guide to ASTM test methods for the analysis of petroleum products and lubricants. ASTM International, West Conshohocken

26.    Chowdhury, K., Banu, L .A., Khan, S. and Latif, A. (2007). Studies on the fatty acid composition of edible oil. Bangladesh Journal of Scientific and Industrial Research, 42(3): 311-316.

27.    Pavia, D. L., Lampman, G. M. and Kriz, G. S. (2010). Introduction to Spectroscopy, 4th  edition United States, Thomson Learcning, Inc,

28.    Denicol Motor Oils N.V (2020). Denicol compressor oil. https://pdf4pro.com/view/compressor-oil-iso-vg-32-46-68-100-150-denicol-5786bc.html. [Access online 25 December 2020].

29.    SubsTech: Substances and Technologies (2012). SubsTech hydraulic oil.    http://www.substech.com/dokuwiki/doku.php?id=hydraulic_oil_iso_100. [Access online 25 December 2020].