Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 976 - 988

 

MICROBIAL DEGRADATION OF PALM OIL IN NATURAL SEAWATER AND IDENTIFICATION OF OIL DEGRADING BACTERIAL CONSORTIUM

 

(Degradasi Mikrob Minyak Sawit dalam Air Laut Semula Jadi dan Pengenalpastian Konsortium Bakteria Pendegradasi Minyak)

 

Arularasu Muthaliar Tamothran1,2, Sree Selva Kumar Ganesen1, Hing Lee Siang1, Sabiqah Tuan Anuar1,  

Razmah Ghazali2, Kesaven Bhubalan1,2,3*

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Malaysian Palm Oil Board (MPOB),

Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang Selangor, Malaysia

3Institute of Marine Biotechnology (IMB),

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: kesaven@umt.edu.my

 

 

Received: 15 March 2022; Accepted: 3 July 2022; Published:  30 October 2022

 

 

Abstract

Palm oil industry is among the most important commodities industry in Malaysia where Malaysia dominates 39% and 44% of global palm oil production and exports respectively. Most of the palm oil exports to various countries are done via sea-shipping which increases the risk towards marine pollution in form of oil spillage from vessels. Microbial degradation studies are important in establishing baseline data which is instrumental for mitigation planning and policy making. Degradation of palm oil derivatives was investigated using natural seawater collected from Klang Port and isolated bacteria Pseudomonas aeruginosa UMTKB-5 based on modified shake flask method as described by OECD Guidelines for Testing Chemicals, OECD TG 306 (Biodegradability in Seawater). Analytical method for determination of CPO and CPKO degradation comprises of measurement of dissolved organic carbon (DOC), colony forming unit (CFU), bacterial diversity using 16S rDNA gene based metagenomic analysis, and fatty acid measurements. Degradation of CPO and CPKO in seawater collected from Klang Port show increase in bacterial population which peaked in day 7 and 21 before declining indicating that palm oil is being used as substrate for bacterial growth in tandem with degradation which is aided by lipase enzyme produced by selected bacteria. Similar growth pattern observed in P. aeruginosa UKTKB-5 cultivated sample. DOC removal in sample showed negative value showing that carbon input from CPO and CPKO degradation is higher than consumption by bacteria. Fatty acid measurement shows changes in composition where bacterial degradation and utilisation of oil. The metagenomic analysis revealed diverse bacteria population in the different sampling locations and four lipase-producing bacterial strains were isolated at the end of the biodegradation experiment. The study has shown the biodegradability of palm oil in seawater and able to provide baseline data to understand and formulate the action plan in the event of spill in marine environment.

 

 

Keywords: palm oil, bacteria diversity, microbial degradation, fatty acids

 

 

 

Abstrak

Industri minyak sawit adalah antara industri komoditi terpenting di Malaysia di mana Malaysia menguasai 39% dan 44% pengeluaran dan eksport minyak sawit secara global masing-masing. Kebanyakan eksport minyak sawit ke pelbagai negara dilakukan melalui perkapalan laut yang meningkatkan risiko pencemaran marin dalam bentuk tumpahan minyak dari kapal. Kajian degradasi mikrob yang mampan adalah penting dalam mengesahkan data asas yang memainkan peranan penting untuk perancangan mitigasi dan pembuatan dasar dan polisi. Degradasi minyak sawit tidak ditapis (CPO) dan minyak isirong sawit tidak ditapis (CPKO) dalam air laut semula jadi yang dikumpul dari Pelabuhan Klang and bakteria Pseudomonas aeruginosa UMTKB-5 telah dikaji menggunakan kaedah kelalang goncang yang diubah suai seperti yang diterangkan oleh garis panduan OECD untuk pengujian bahan kimia, OECD TG 306 (kebolehbiodegradan dalam air laut). Analisa process degradasi CPO and CPKO melibatkan pengukuran karbon organik terlarut (DOC), kiraan unit pembentuk koloni (CFU), analisis metagenomik berasaskan gen 16S rDNA untuk kepelbagaian bakteria, dan perubahan acid lemak bebas. Keputusan menunjukkan peningkatan dalam kiraan CFU apabila bilangan hari meningkat dan kiraan CFU berada pada tahap tertinggi pada hari ke-7 dan 21 sebelum menurun. Situasi ini menunjukkan penggunaan minyak sawit sebagai substrat oleh bakteria. Peningkatan populasi bakteria yang sama ditunjukkan oleh bakteri P. aeruginosa UMTKB-5. Perubahan nilai penyingkiran DOC kepada nilai negatif mendedahakan kemasukan karbon melalui process degradasi CPO and CPKO pada tahap yang melebihi penggunaan oleh bakteria. Perubahan komposisi asid lemak penggunaan substrat oleh bakteria. Analisis metagenomik mendedahkan populasi bakteria yang pelbagai di lokasi persampelan yang berbeza dan lebih daripada empat strain bakteria telah diasingkan pada akhir eksperimen biodegradasi. Strain positif juga diuji untuk aktiviti lipolitik. Kajian ini telah mendedahkan kebolehbiodegradasian minyak sawit dalam air laut dan dijangka dapat membekalkan maklumat asas kepada pihak berkuasa berkaitan minyak sawit, pengangkutan dan agensi alam sekitar untuk memahami dan merangka pelan tindakan sekiranya berlaku tumpahan dalam persekitaran marin.

 

Kata kunci: minyak sawit, kepelbagaian bakteria, bakteria pendegradasi, asid lemak

 


 

References

1.              El-Hamidi, M. and Zaher, F. A. (2018). Production of vegetable oils in the world and in Egypt: An overview. Bulletin of the National Research Centre, 42(1): 19.

2.              USDA. (2017). United States Department of Agriculture. Accessed at www.fas.usda.gov [Access date March 01, 2022].

3.              Purba, H. J., Sinaga, B. M., Novianti, T. and Kustiari, R. (2018). The impact of changes in external factors on the world vegetable oil market. International Journal of Economics and Financial Issues, 8(6): 176.

4.              MPOB. (2017). Pocketbook of Oil Palm Statistics. Malaysia, Malaysian Palm Oil Board.

5.              Sambanthamurthi, R., Sundram, K. and Tan, Y. A. (2000). Chemistry and biochemistry of palm oil. Progress in Lipid Research, 39(6): 507-558.

6.              Bucas, G., and Saliot, A. (2002). Sea transport of animal and vegetable oils and its environmental consequences. Marine Pollution Bulletin, 44(12): 1388-1396.

7.    South China Morning Post (2017). Japanese-owned tanker and Singapore container ship identified as vessels in collision leading to palm oil spill. Accessed from http://www.scmp.com/news/hong-kong/health-environment/article/2106702/japanese-owned-tanker-and-singapore-container-ship [Access date March 01, 2022].

8.        The Telegraph. (2018). Ships dumping noxious palm oil off British coast without legal consequences. Accessed from https://www.telegraph.co.uk/news/2018/02/03/ships-dumping-noxious-palm-oil-british-coast-without-legal-consequences [Access date March 01, 2022].

9.            USEPA. (2015). Emergency response, oil spills prevention and preparedness regulations - vegetable oils and animal fats. Accessed from http://www.epa.gov/emergency-response/vegetable-oils-and-animal-fats [Access date March 01, 2022].

10.           APHA. (1999). Standard Methods of Water and Wastewater. Washington D.C., USA, American Public Health Association.

11.           OECD. (1992). Test No. 306: Biodegradability in seawater. Paris, OECD Publishing. Accessed date March 01, 2022]

12.           Karanfil, T., Erdogan, I. and Schlautman, M. A. (2003). Selecting filter membranes for measuring DOC and UV254. Journal - American Water Works Association, 95(3): 86-100.

13.           Suratman, S., Zan, N. H. C., Aziz, A. A. and Tahir, N. M. (2017). Spatial and seasonal variations of organic carbon-based nutrients in Setiu wetland, Malaysia. Sains Malaysiana, 46(6): 859-865.

14.           Suratman, S., Weston, K., Jickells, T. and Fernand, L. (2009). Spatial and seasonal changes of dissolved and particulate organic C in the North Sea. Hydrobiologia, 628(1): 13-25.

15.       Bhubalan, K., Hui-Wan, R. A. C., Renganathan, P., Tamothran, A. M., Ganesen, S. S. K. and Ghazali, R. (2019). Bacterial degradation of palm olein in seawater and identification of some cultivable strains. Malaysian Applied Biology, 48(1): 1-7.

16.           Hongoh, Y., Yuzawa, H., Ohkuma, M. and Kudo, T. (2003). Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiology Letters, 221(2): 299-304.

17.       Azran, M. F. M., Fazielawanie, N., Saidin, J., Wahid, E. and Bhubalan, K. (2014). Bioconversion of cane sugar refinery by-products into rhamnolipid by marine Pseudomonas aeruginosa. Proceedings of International Conference on Beneficial Microbes, 2014: 259-262.

18.           Shahaliyan, F., Safahieh, A. and Abyar, H. (2015). Evaluation of emulsification index in marine bacteria Pseudomonas sp. and Bacillus sp. Arabian Journal for Science and Engineering, 40(7): 1849-1854.

19.           Bhubalan, K., Rathi, D. N., Abe, H., Iwata, T. and Sudesh, K. (2010). Improved synthesis of P (3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polymer Degradation and Stability, 95(8): 1436-1442.

20.       Anuar, S. T., Mugo, S. M. and Curtis, J. M. (2015). A flow-through enzymatic microreactor for the rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis. Analytical Methods, 7(14): 5898-5906.

21.           Russell, D. J. and Carlson, B. A. (1978). Edible-oil pollution on Fanning Island. Pacific Science, 32(1): 1-15.

22.           Mudge, S. M. (1995). Deleterious effects from accidental spillages of vegetable oils. Spill Science & Technology Bulletin, 2(2-3): 187-191.

23.           Ott, A., Martin, T. J., Whale, G. F., Snape, J. R., Rowles, B., Galay-Burgos, M. and Davenport, R. J. (2019). Improving the biodegradability in seawater test (OECD 306). Science of the Total Environment, 666: 399-404.

24.           Al-Darbi, M. M., Saeed, N. O., Islam, M. R. and Lee, K. (2005). Biodegradation of natural oils in seawater. Energy sources, 27(1-2): 19-34.

25.           Mudge, S. M., Salgado, M. A. and East, J. (1993). Preliminary investigations into sunflower oil contamination following the wreck of the MV Kimya. Marine Pollution Bulletin, 26(1): 40-44.

26.           Thouand, G., Friant, P., Bois, F., Cartier, A., Maul, A. and Block, J. C. (1995). Bacterial inoculum density and probability of para-nitrophenol biodegradability test response. Ecotoxicology and Environmental Safety, 30(3): 274-282.

27.           Marsudi, S., Unno, H. and Hori, K. (2008). Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 78(6): 955-961.

28.       Thaniyavarn, J., Chongchin, A., Wanitsuksombut, N., Thaniyavarn, S., Pinphanichakarn, P., Leepipatpiboon, N., Morikawa, M. and Kanaya, S. (2006). Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. The Journal of General and Applied Microbiology, 52(4): 215-222.

29.           Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Dirisala, V. and Kodali, V. P. (2018). Role of biosurfactants in bioremediation of oil pollution - A review. Petroleum, 4(3): 241-249.