Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 999 - 1010
SPECTROPHOTOMETRIC METHODS FOR
DETERMINING TROLOX EQUIVALENT ANTIOXIDANT CAPACITIES OF TEA THROUGH DIFFERENT In
Vitro ASSAYS
(Kaedah
Spektrofotometrik bagi Penentuan Trolox Kapasiti Antioksida Teh Melalui
Pelbagai
Ujian In Vitro)
Le-Thi Anh-Dao1, Do Minh-Huy1, Nguyen Thanh-Nho1, Nguyen Quoc-Duy1,
Nguyen-Thi Thanh-Dieu1,
Le Nhon-Duc2, Nguyen Quang-Hieu1, Nguyen Cong-Hau1*
1Faculty
of Environmental and Food Engineering,
Nguyen Tat Thanh University,
Ho Chi Minh City, Vietnam
2Warrantek
Joint Stock Company-Testing Center, Can Tho City,
Vietnam
*Corresponding
author: nchau@ntt.edu.vn
Received: 14 April 2022; Accepted: 11
June 2022; Published: 30 October 2022
Abstract
Tea (Camellia
sinensis) is among the most popular non-alcoholic beverages consumed daily
in the world due to its unique taste and flavor. Tea leaves and their products
have obtained significant attention because of their high antioxidant
capacities. In this study, the analytical methods based on the molecular
absorption spectrophotometric principle were evaluated for determining the
Trolox equivalent antioxidant capacities (TEACs), including 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical
scavenging activity, ferric reducing antioxidant power (FRAP), and cupric
reducing antioxidant capacity (CUPRAC)
in several commercial dried tea products originated from Lam Dong Province
(Vietnam). Double liquid extraction in a water bath at 70 ℃ (10 min for each extraction cycle) was employed to
obtain the extracts for further colorimetric reactions. The results demonstrate
low limits of detection and quantification (12.3-37.3 µmol
TE/L, 9.9-30.1 µmol TE/L, and 11.8-35.7 µmol TE/L for ABTS, FRAP, and CUPRAC, respectively), wide
working ranges (100-700 µmol TE/L), favorable
repeatability (RSDr of 1.03-1.52%),
reproducibility (RSDR of 1.26-1.55%), and acceptable recoveries
(98.0-101%) according to Appendix F of AOAC (2016). The Shewhart charts were also constructed based on the UV-Vis 1800 Shimadzu
(Japan) from 21 separate working days to control the accuracy and precision of
the analytical results. For tea products in Lam Dong, the TEACs of all samples
in the descending order were determined as green tea > oolong tea > black
tea, which could be mainly due to the differences in the oxidation levels
during the fermentation. In addition, strong correlation was recorded for pairs
of FRAP-CUPRAC (R2 = 0.8579), ABTS-FRAP (R2 = 0.8453),
and ABTS-CUPRAC (R2 = 0.710).
Keywords: tea, antioxidant
capacities, 2,2’-Azino-bis(3-ethylbenzothiazoline)-6-sulphonic
acid radical scavenging activity, ferric reducing antioxidant power, cupric
reducing antioxidant capacity
Abstrak
Teh (Camellia sinensis) merupakan minuman tak
beralkohol popular yang diambil setiap hari di seluruh dunia kerana keunikkan
rasanya. Daun teh dan produknya mendapat perhatian penting kerana mempunyai
kapasiti antioksida yang tinggi. Dalam kajian ini, kaedah analisis berasaskan prinsip
spektrofotometrik serapan molekul telah dinilai bagi penentuan kapasiti
antioksida setara Trolox (TEACs), termasuk cerakin pemerangkapan radikal 2,2’-Azino-bis(3-etilbenzothiazolin-6-asid
sulfonik) (ABTS), kuasa antioksida penurunan ferik (FRAP) dan kapasiti
antioksida penurunan kuprik (CUPRAC) di dalam pelbagai produk teh komersial
berasal dari wilayah Lam Dong (Vietnam). Pengekstrakan cecair cecair di dalam rendaman air pada suhu 70 °C (10 min bagi
setiap kitaran pengekstrakan) telah dibangunkan bagi tujuan memperolehi hasil
ekstrak sebelum tindak balas kolorimetrik. Hasil menunjukkan had pengesanan dan pengkuantitian
rendah (12.3-37.3 µmol TE/L, 9.9-30.1 µmol TE/L,dan 11.8-35.7 µmol TE/L
masing-masing bagi ABTS, FRAP, dan CUPRAC), julat kelinearan (100-700 µmol TE/L), kebolehulangan (RSDr of
1.03-1.52%), kebolehasilan semula (RSDR of 1.26-1.55%), dan
perolehan semula (98.0-101%) berdasarkan Appendix F AOAC (2016). Carta Shewhart telah dibangunkan berdasarkan UV-Vis 1800
Shimadzu (Jepun) dari 21 hari bekerja berbeza bagi mengawal ketepatan dan
kejituan hasil analisis. Bagi produk teh Lam Dong, nilai TEACs semua sampel di susun
tertib menurun iaitu teh hijau > teh oolong > teh hitam, disebabkan oleh
perbezaan tahap pengoksidaan semasa penapaian. Tambahan lagi, hubungkait yang
kuat direkodkan bagi pasangan FRAP-CUPRAC (R2 = 0.8579), ABTS-FRAP
(R2 = 0.8453), dan ABTS-CUPRAC (R2 = 0.710).
Kata kunci: teh, keupayaan antioksida, ,2’-Azino-bis(3-etilbenzothiazolin-6-asid
sulfonik), kuasa antioksida penurunan ferik, kapasiti antioksida penurunan
kuprik
References
1.
Halliwell, B. (1999).
Food-derived antioxidants. Evaluating their importance in food and in vivo. Food
Science and Agricultural Chemistry, 1(2): 67-109.
2.
Namal Senanayake, S.P.J.
(2013). Green tea extract: Chemistry, antioxidant properties and food applications
– A review. Journal of Functional Foods,
5(4): 1529-1541.
3.
Ohigashi, H., Osawa, T.,
Terao, J., Watanabe, S. and Yoshikawa, T. (2013).
Food factors for cancer prevention,
Springer Science & Business Media.
4.
Heim, K.E., Tagliaferro, A.R.
and Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and
structure-activity relationships. The Journal of Nutritional Biochemistry,
13(10): 572-584.
5.
Kopjar, M., Tadić, M. and
Piližota, V. (2015). Phenol content and antioxidant activity of green, yellow
and black tea leaves. Chemical and Biological Technologies in Agriculture,
2 (1): 1-6.
6.
Frankel, E. N. and Meyer, A.
S. (2000).
The problems of using one dimensional
methods to evaluate multifunctional food and biological antioxidants. Journal
of the Science of Food and Agriculture,
80(13): 1925-1941.
7.
Pellegrini, N., Serafini, M.,
Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M. and Brighenti, F. (2003).
Total antioxidant capacity of plant foods, beverages and oils consumed in Italy
assessed by three different in vitro assays. The Journal of Nutrition, 133(9):
2812-2819.
8.
Jayasekera, S., Molan, A.L.,
Garg, M. and Moughan, P.J. (2011). Variation in antioxidant potential and total
polyphenol content of fresh and fully-fermented Sri Lankan tea. Food
Chemistry, 125 (2): 536-541.
9.
Lachman, J., Šulc, M. and Schilla,
M. (2007). Comparison of the total antioxidant status of Bohemian wines during
the wine-making process. Food Chemistry,
103 (3): 802-807.
10.
Anh-Dao, L.-T., Nhon-Duc, L.,
Cong-Hau, N. and Thanh-Nho, N. (2021). Variability of total polyphenol contents
in ground coffee products and their antioxidant capacities through different
reaction mechanisms. Biointerface Research in Applied Chemistry,
12(4): 4857-4870.
11.
ISO 1572 (1980).
Tea-Preparation of ground sample of known dry matter content.
12.
ISO 14502-1
(2005). Determination of substances characteristic of green and black tea.
13.
Marc, F., Davin, A.,
Deglčne-Benbrahim, L., Ferrand, C., Baccaunaud, M. and Fritsch, P. (2004).
Studies of several analytical methods for antioxidant potential evaluation in
food, Medecine
Sciences: M/S. 20(4): 458-463.
14.
Abdullahi, A.D., Kodchasee,
P., Unban, K., Pattananandecha, T., Saenjum, C., Kanpiengjai, A., Shetty, K.
and Khanongnuch, C. (2021). Comparison of phenolic contents and scavenging
activities of miang extracts derived from filamentous and non-filamentous fungi-based
fermentation processes. Antioxidants,
10(7): 1144.
15.
Munteanu, I. G. and Apetrei,
C. (2021). Analytical methods used in determining antioxidant activity: A
review. International Journal of Molecular Sciences,
22(7): 3380.
16.
Son, T. C., Da, P. X., Dao, L.
T. H. and Trung, N. T. (2010).
Method validation in chemical and microbiological analyses,
National Institute for Food Control (Vietnamese).
17.
Ellison, S.L., Barwick, V. J.
and Farrant, T. J. D.
(2009). Practical statistics for the analytical scientist:
a bench guide, Royal Society of Chemistry.
18.
Hrabárová, E., Valachová, K.,
Rapta, P. and Šoltés, L. (2010). An alternative standard for Trolox-equivalent
antioxidant-capacity estimation based on thiol antioxidants. Comparative 2, 2’-Azinobis
[3-ethylbenzothiazoline-6-sulfonic
acid] decolorization and rotational viscometry study regarding hyaluronan
degradation. Chemistry & Biodiversity,
7(9): 2191-2200.
19.
Yashin, A., Yashin, Y. and
Nemzer, B. (2011). Determination of antioxidant activity in tea extracts, and
their total antioxidant content. American Journal of Biomedical Sciences,
3(4): 322-335.
20.
Shannon, E., Jaiswal, A. K.
and Abu-Ghannam, N. (2018). Polyphenolic content and antioxidant capacity of
white, green, black, and herbal teas: a kinetic study. Food Research,
2(1): 1-11.
21.
Carloni, P., Tiano, L.,
Padella, L., Bacchetti, T., Customu, C., Kay, A. and Damiani, E. (2013).
Antioxidant activity of white, green and black tea obtained from the same tea
cultivar. Food Research International,
53 (2): 900-908.
22.
Zhang, C., Suen, C.L.-C.,
Yang, C. and Quek, S.Y. (2018). Antioxidant capacity and major polyphenol
composition of teas as affected by geographical location, plantation elevation
and leaf grade. Food Chemistry, 244: 109-119.
23.
Chan, E.W.C., Lim, Y.Y. and
Chew, Y.L. (2007). Antioxidant activity of Camellia sinensis leaves and
tea from a lowland plantation in Malaysia. Food Chemistry,
102(4): 1214-1222.
24.
Appendix F of
AOAC (2016). Guidelines for Standard
Method Performance Requirements.
25.
ISO 8258 (1991).
Shewhart control charts.
26.
Qian, Z.-M., Fang, B.-W.,
Chen, H.-M., Li, C.-H., Huang, Q., Chen, L., Li, W.-J. and Li, D.-Q. (2020).
Online liquid microextraction coupled with HPLC-ABTS for rapid screening of
natural antioxidants: Case study of three different teas. Journal of
Chromatographic Science,
58(9): 875-879.
27.
Maizura, M., Aminah, A. and
Wan Aida, W. (2011). Total phenolic content and antioxidant activity of kesum (Polygonum
minus), ginger (Zingiber officinale) and turmeric (Curcuma longa)
extract. International Food Research Journal,
18(2): 526-531.
28.
Azlim Almey, A., Ahmed Jalal
Khan, C., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. and Kamarul Rahim,
K. (2010). Total phenolic content and primary antioxidant activity of
methanolic and ethanolic extracts of aromatic plants' leaves. International
Food Research Journal, 17(4):
1077-1083.
29.
Cong-Hau, N., Anh-Dao, L.-T.,
Nhon-Duc, L. and Thanh-Nho, N. (2021). Spectrophotometric determination of
total flavonoid contents in tea products and their liquors under various
brewing conditions. Malaysian Journal of
Analytical Science, 25(5):
740-750.
30.
Atoui, A. K., Mansouri, A.,
Boskou, G. and Kefalas, P. (2005). Tea and herbal infusions: their antioxidant
activity and phenolic profile. Food Chemistry,
89(1): 27-36.
31.
Izzreen, N.Q. and Mohd
Fadzelly, A. (2013). Phytochemicals and antioxidant properties of different
parts of Camellia sinensis leaves from Sabah Tea Plantation in Sabah,
Malaysia. International Food Research Journal,
20(1): 307-312.
32.
Rusak, G., Komes, D.,
Likić, S., Horžić, D. and Kovač, M. (2008). Phenolic content and
antioxidative capacity of green and white tea extracts depending on extraction
conditions and the solvent used. Food Chemistry,
110(4): 852-858.
33.
Harbowy, M.E., Balentine,
D.A., Davies, A.P. and Cai, Y. (1997). Tea chemistry. Critical Reviews in
Plant Sciences, 16(5): 415-480.
34.
Graham, H.N. (1992). Green tea
composition, consumption, and polyphenol chemistry. Preventive Medicine,
21(3): 334-350.
35.
Zhao, C.-N., Tang, G.-Y., Cao,
S.-Y., Xu, X.-Y., Gan, R.-Y., Liu, Q., Mao, Q.-Q., Shang, A. and Li, H.-B.
(2019). Phenolic profiles and antioxidant activities of 30 tea infusions from
green, black, oolong, white, yellow and dark teas. Antioxidants,
8(7): 215.
36.
Zielinski, A. A. F., Haminiuk,
C. W. I., Alberti, A., Nogueira, A., Demiate, I. M. and Granato, D. (2014). A
comparative study of the phenolic compounds and the in vitro antioxidant
activity of different Brazilian teas using multivariate statistical techniques.
Food Research International, 60: 246-254.
37.
Imran, A., Butt, M. S.,
Sharif, M. K. and Sultan, J. I. (2013). Chemical profiling of black tea
polyphenols. Pakistan Journal of Nutrition,
12(3): 261-267.
38.
Lee, J.-E., Lee, B.-J., Chung,
J.-O., Kim, H.-N., Kim, E.-H., Jung, S., Lee, H., Lee, S.-J. and Hong, Y.-S.
(2015). Metabolomic unveiling of a diverse range of green tea (Camellia
sinensis) metabolites dependent on geography. Food Chemistry,
174: 452-459.
39.
Pacheco-Coello, F., Peraza-Marrero,
M., Orosco-Vargas, C., Ramirez-Azuaje, D. and Pinto-Catari, I. (2020).
Determination of total phenolic compounds and evaluation of the antioxidant
activity of commercial and artisanal green tea traded in Maracay, Venezuela. Revista
Boliviana de Química,
37(1): 28-33.