Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 999 - 1010

 

SPECTROPHOTOMETRIC METHODS FOR DETERMINING TROLOX EQUIVALENT ANTIOXIDANT CAPACITIES OF TEA THROUGH DIFFERENT In Vitro ASSAYS

 

(Kaedah Spektrofotometrik bagi Penentuan Trolox Kapasiti Antioksida Teh Melalui

Pelbagai Ujian In Vitro)

 

Le-Thi Anh-Dao1, Do Minh-Huy1, Nguyen Thanh-Nho1, Nguyen Quoc-Duy1, Nguyen-Thi Thanh-Dieu1,

Le Nhon-Duc2, Nguyen Quang-Hieu1, Nguyen Cong-Hau1*

 

1Faculty of Environmental and Food Engineering,

Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

2Warrantek Joint Stock Company-Testing Center, Can Tho City, Vietnam

 

*Corresponding author: nchau@ntt.edu.vn

 

 

Received: 14 April 2022; Accepted: 11 June 2022; Published: 30 October 2022

 

 

Abstract

Tea (Camellia sinensis) is among the most popular non-alcoholic beverages consumed daily in the world due to its unique taste and flavor. Tea leaves and their products have obtained significant attention because of their high antioxidant capacities. In this study, the analytical methods based on the molecular absorption spectrophotometric principle were evaluated for determining the Trolox equivalent antioxidant capacities (TEACs), including 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) in several commercial dried tea products originated from Lam Dong Province (Vietnam). Double liquid extraction in a water bath at 70 (10 min for each extraction cycle) was employed to obtain the extracts for further colorimetric reactions. The results demonstrate low limits of detection and quantification (12.3-37.3 µmol TE/L, 9.9-30.1 µmol TE/L, and 11.8-35.7 µmol TE/L for ABTS, FRAP, and CUPRAC, respectively), wide working ranges (100-700 µmol TE/L), favorable repeatability (RSDr of 1.03-1.52%), reproducibility (RSDR of 1.26-1.55%), and acceptable recoveries (98.0-101%) according to Appendix F of AOAC (2016). The Shewhart charts were also constructed based on the UV-Vis 1800 Shimadzu (Japan) from 21 separate working days to control the accuracy and precision of the analytical results. For tea products in Lam Dong, the TEACs of all samples in the descending order were determined as green tea > oolong tea > black tea, which could be mainly due to the differences in the oxidation levels during the fermentation. In addition, strong correlation was recorded for pairs of FRAP-CUPRAC (R2 = 0.8579), ABTS-FRAP (R2 = 0.8453), and ABTS-CUPRAC (R2 = 0.710).

 

Keywords: tea, antioxidant capacities, 2,2’-Azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid radical scavenging activity, ferric reducing antioxidant power, cupric reducing antioxidant capacity

 

Abstrak

Teh (Camellia sinensis) merupakan minuman tak beralkohol popular yang diambil setiap hari di seluruh dunia kerana keunikkan rasanya. Daun teh dan produknya mendapat perhatian penting kerana mempunyai kapasiti antioksida yang tinggi. Dalam kajian ini, kaedah analisis berasaskan prinsip spektrofotometrik serapan molekul telah dinilai bagi penentuan kapasiti antioksida setara Trolox (TEACs), termasuk cerakin pemerangkapan radikal 2,2’-Azino-bis(3-etilbenzothiazolin-6-asid sulfonik) (ABTS), kuasa antioksida penurunan ferik (FRAP) dan kapasiti antioksida penurunan kuprik (CUPRAC) di dalam pelbagai produk teh komersial berasal dari wilayah Lam Dong (Vietnam). Pengekstrakan cecair cecair di dalam rendaman air pada suhu 70 °C (10 min bagi setiap kitaran pengekstrakan) telah dibangunkan bagi tujuan memperolehi hasil ekstrak sebelum tindak balas kolorimetrik. Hasil menunjukkan had pengesanan dan pengkuantitian rendah (12.3-37.3 µmol TE/L, 9.9-30.1 µmol TE/L,dan 11.8-35.7 µmol TE/L masing-masing bagi ABTS, FRAP, dan CUPRAC), julat kelinearan (100-700 µmol TE/L), kebolehulangan (RSDr of 1.03-1.52%), kebolehasilan semula (RSDR of 1.26-1.55%), dan perolehan semula (98.0-101%) berdasarkan Appendix F AOAC (2016). Carta Shewhart  telah dibangunkan berdasarkan UV-Vis 1800 Shimadzu (Jepun) dari 21 hari bekerja berbeza bagi mengawal ketepatan dan kejituan hasil analisis. Bagi produk teh Lam Dong, nilai TEACs semua sampel di susun tertib menurun iaitu teh hijau > teh oolong > teh hitam, disebabkan oleh perbezaan tahap pengoksidaan semasa penapaian. Tambahan lagi, hubungkait yang kuat direkodkan bagi pasangan FRAP-CUPRAC (R2 = 0.8579), ABTS-FRAP (R2 = 0.8453), dan ABTS-CUPRAC (R2 = 0.710).

 

Kata kunci: teh, keupayaan antioksida, ,2’-Azino-bis(3-etilbenzothiazolin-6-asid sulfonik), kuasa antioksida penurunan ferik, kapasiti antioksida penurunan kuprik

 


 

References

1.         Halliwell, B. (1999). Food-derived antioxidants. Evaluating their importance in food and in vivo. Food Science and Agricultural Chemistry, 1(2): 67-109.

2.         Namal Senanayake, S.P.J. (2013). Green tea extract: Chemistry, antioxidant properties and food applications – A review. Journal of Functional Foods, 5(4): 1529-1541.

3.         Ohigashi, H., Osawa, T., Terao, J., Watanabe, S. and Yoshikawa, T. (2013). Food factors for cancer prevention, Springer Science & Business Media.

4.         Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10): 572-584.

5.         Kopjar, M., Tadić, M. and Piližota, V. (2015). Phenol content and antioxidant activity of green, yellow and black tea leaves. Chemical and Biological Technologies in Agriculture, 2 (1): 1-6.

6.         Frankel, E. N. and Meyer, A. S. (2000). The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13): 1925-1941.

7.         Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M. and Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of Nutrition, 133(9): 2812-2819.

8.         Jayasekera, S., Molan, A.L., Garg, M. and Moughan, P.J. (2011). Variation in antioxidant potential and total polyphenol content of fresh and fully-fermented Sri Lankan tea. Food Chemistry, 125 (2): 536-541.

9.         Lachman, J., Šulc, M. and Schilla, M. (2007). Comparison of the total antioxidant status of Bohemian wines during the wine-making process. Food Chemistry, 103 (3): 802-807.

10.      Anh-Dao, L.-T., Nhon-Duc, L., Cong-Hau, N. and Thanh-Nho, N. (2021). Variability of total polyphenol contents in ground coffee products and their antioxidant capacities through different reaction mechanisms. Biointerface Research in Applied Chemistry, 12(4): 4857-4870.

11.      ISO 1572 (1980). Tea-Preparation of ground sample of known dry matter content.

12.      ISO 14502-1 (2005). Determination of substances characteristic of green and black tea.

13.      Marc, F., Davin, A., Deglčne-Benbrahim, L., Ferrand, C., Baccaunaud, M. and Fritsch, P. (2004). Studies of several analytical methods for antioxidant potential evaluation in food, Medecine Sciences: M/S. 20(4): 458-463.

14.      Abdullahi, A.D., Kodchasee, P., Unban, K., Pattananandecha, T., Saenjum, C., Kanpiengjai, A., Shetty, K. and Khanongnuch, C. (2021). Comparison of phenolic contents and scavenging activities of miang extracts derived from filamentous and non-filamentous fungi-based fermentation processes. Antioxidants, 10(7): 1144.

15.      Munteanu, I. G. and Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7): 3380.

16.      Son, T. C., Da, P. X., Dao, L. T. H. and Trung, N. T. (2010). Method validation in chemical and microbiological analyses, National Institute for Food Control (Vietnamese).

17.      Ellison, S.L., Barwick, V. J. and Farrant, T. J. D. (2009). Practical statistics for the analytical scientist: a bench guide, Royal Society of Chemistry.

18.      Hrabárová, E., Valachová, K., Rapta, P. and Šoltés, L. (2010). An alternative standard for Trolox-equivalent antioxidant-capacity estimation based on thiol antioxidants. Comparative 2, 2’-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation. Chemistry & Biodiversity, 7(9): 2191-2200.

19.      Yashin, A., Yashin, Y. and Nemzer, B. (2011). Determination of antioxidant activity in tea extracts, and their total antioxidant content. American Journal of Biomedical Sciences, 3(4): 322-335.

20.      Shannon, E., Jaiswal, A. K. and Abu-Ghannam, N. (2018). Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: a kinetic study. Food Research, 2(1): 1-11.

21.      Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A. and Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Research International, 53 (2): 900-908.

22.      Zhang, C., Suen, C.L.-C., Yang, C. and Quek, S.Y. (2018). Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food Chemistry, 244: 109-119.

23.      Chan, E.W.C., Lim, Y.Y. and Chew, Y.L. (2007). Antioxidant activity of Camellia sinensis leaves and tea from a lowland plantation in Malaysia. Food Chemistry, 102(4): 1214-1222.

24.      Appendix F of AOAC (2016). Guidelines for Standard Method Performance Requirements.

25.      ISO 8258 (1991). Shewhart control charts.

26.      Qian, Z.-M., Fang, B.-W., Chen, H.-M., Li, C.-H., Huang, Q., Chen, L., Li, W.-J. and Li, D.-Q. (2020). Online liquid microextraction coupled with HPLC-ABTS for rapid screening of natural antioxidants: Case study of three different teas. Journal of Chromatographic Science, 58(9): 875-879.

27.      Maizura, M., Aminah, A. and Wan Aida, W. (2011). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal, 18(2): 526-531.

28.      Azlim Almey, A., Ahmed Jalal Khan, C., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M. and Kamarul Rahim, K. (2010). Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants' leaves. International Food Research Journal, 17(4): 1077-1083.

29.      Cong-Hau, N., Anh-Dao, L.-T., Nhon-Duc, L. and Thanh-Nho, N. (2021). Spectrophotometric determination of total flavonoid contents in tea products and their liquors under various brewing conditions. Malaysian Journal of Analytical Science, 25(5): 740-750.

30.      Atoui, A. K., Mansouri, A., Boskou, G. and Kefalas, P. (2005). Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chemistry, 89(1): 27-36.

31.      Izzreen, N.Q. and Mohd Fadzelly, A. (2013). Phytochemicals and antioxidant properties of different parts of Camellia sinensis leaves from Sabah Tea Plantation in Sabah, Malaysia. International Food Research Journal, 20(1): 307-312.

32.      Rusak, G., Komes, D., Likić, S., Horžić, D. and Kovač, M. (2008). Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chemistry, 110(4): 852-858.

33.      Harbowy, M.E., Balentine, D.A., Davies, A.P. and Cai, Y. (1997). Tea chemistry. Critical Reviews in Plant Sciences, 16(5): 415-480.

34.      Graham, H.N. (1992). Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine, 21(3): 334-350.

35.      Zhao, C.-N., Tang, G.-Y., Cao, S.-Y., Xu, X.-Y., Gan, R.-Y., Liu, Q., Mao, Q.-Q., Shang, A. and Li, H.-B. (2019). Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants, 8(7): 215.

36.      Zielinski, A. A. F., Haminiuk, C. W. I., Alberti, A., Nogueira, A., Demiate, I. M. and Granato, D. (2014). A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Research International, 60: 246-254.

37.      Imran, A., Butt, M. S., Sharif, M. K. and Sultan, J. I. (2013). Chemical profiling of black tea polyphenols. Pakistan Journal of Nutrition, 12(3): 261-267.

38.      Lee, J.-E., Lee, B.-J., Chung, J.-O., Kim, H.-N., Kim, E.-H., Jung, S., Lee, H., Lee, S.-J. and Hong, Y.-S. (2015). Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography. Food Chemistry, 174: 452-459.

39.      Pacheco-Coello, F., Peraza-Marrero, M., Orosco-Vargas, C., Ramirez-Azuaje, D. and Pinto-Catari, I. (2020). Determination of total phenolic compounds and evaluation of the antioxidant activity of commercial and artisanal green tea traded in Maracay, Venezuela. Revista Boliviana de Química, 37(1): 28-33.