Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 965 - 975

 

ADSORPTION AND MOLECULAR DOCKING STUDY

OF BISPHENOL A USING REUSABLE ZIF–8 (ZN) METAL–ORGANIC FRAMEWORKS IN AN AQUEOUS SOLUTION

 

(Penjerapan dan Kajian Penambatan Molekul Bisfenol A Menggunakan Kerangka Logam–Organik ZIF–8 (Zn) yang boleh Digunakan Semula dalam Larutan Air)

 

Afzan Mahmad1, 3, Teh Ubaidah Noh2, Maizatul Shima Shaharun3*, Zakariyya Uba Zango4

 

1Laboratory Department,

Universiti Kuala Lumpur, Royal College of Medicine Perak, Malaysia

2Institute of Bioproduct Development, Universiti Teknologi Malaysia, Malaysia

3Fundamental and Applied Sciences Department,

Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

4Department of Chemistry, Al-Qalam University, Katsina, Nigeria

 

*Corresponding author: maizats@utp.edu.my  

 

 

Received: 24 May 2022; Accepted: 18 July 2022; Published:  30 October 2022

 

 

Abstract

Bisphenol A (BPA) is a derivative of phenol that has been identified as a pollutant in water. This work aimed to evaluate the experimental and molecular docking findings on the adsorption of BPA using porous material metal–organic frameworks (MOFs) of zeolitic imidazolate frameworks (ZIF–8 (Zn)). The commercial ZIF–8 (Zn) was characterized by field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), and energy dispersive X–ray (EDX). The surface morphology of ZIF–8 (Zn) showed cubic particles and zinc components (18.70 %) detected by EDX. The adsorption of endocrine– disruptive chemicals of BPA was performed by batch adsorption experiments and measured using ultraviolet–visible (UV–Vis) spectrophotometry. ZIF–8 (Zn) was shown to achieve adsorption at BPA dosage (0.4 g), and pH 6 (25 oC) with high BPA removal (98.84%). Molecular docking simulation represented that BPA was bound to ZIF–8 (Zn) via the inner pores. The mechanism interaction of BPA and ZIF–8 (Zn) was via van der Waals interaction. The adsorption of BPA onto ZIF–8 (Zn) fitted the Langmuir isotherm and the pseudo–second–order model. The possible regeneration and reusability of ZIF–8 (Zn) show good suitability for reusable adsorbent in BPA adsorption application from environmental water. 

 

Keywords: bisphenol A, adsorption, ZIF–8, water pollutants, metal–organic frameworks

 

Abstrak

Bisfenol A (BPA) adalah terbitan fenol yang telah dikenal pasti sebagai bahan pencemar di dalam air. Kerja kajian ini bertujuan untuk menilai ekperimen dan kajian penambatan molekul pada penjerapan BPA menggunakan kerangka kerja logam–organik (MOFs) bahan berliang iaitu kerangka besi zeolitik imidazolat (ZIF–8 (Zn)). ZIF–8 (Zn) secara komersil dicirikan oleh mikroskopi electron imbasan pancaran medan (FESEM), mikroskopi electron elektron imbasan (SEM), dan sinar–X serakan tenaga (EDX). Morfologi permukaan ZIF–8 (Zn) oleh EDX menunjukkan zarah padu partikel kubik dan komponen zink (18.70 %) dikesan oleh EDX. Penjerapan BPA yang mengganggu bahan kimia endokrin telah dilakukan oleh secara eksperimen penjerapan kelompok dan diukur menggunakan spektrofotometer ultraungu tampak (UV–Vis). ZIF–8 (Zn) yang ditunjukkan mencapai penjerapan pada dos BPA (0.4 g), pH 6 (25 oC) dengan penyingkiran BPA yang tinggi (98.84%). Simulasi penambatan molekul menunjukkan bahawa BPA terikat kepada ZIF–8 (Zn) melalui liang dalam. Mekanisma BPA dan ZIF–8 (Zn) adalah melalui interaksi van der Waals. Penjerapan BPA ke atas ZIF–8 (Zn) adalah sepadan dengan model Langmuir dan pseudo–tertib–kedua. Kemungkinan penjanaan dan kebolehgunaan semula untuk ZIF–8 (Zn) menunjukkan kesesuaian yang baik untuk bahan penjerap yang boleh diguna semula dalam aplikasi penjerapan BPA daripada air persekitaran.

 

Kata kunci: bisfenol A, penjerapan, ZIF–8, pencemaran air, kerangka besi logam–organik

 


 

 

References

1.      Bhatnagar, A. and Anastopoulos, I. (2017). Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere, 168: 885-902.

2.      Min Park, J. and Hwa Jhung, S. (2020). A remarkable adsorbent for removal of bisphenol S from water: aminated metal–organic framework, MIL–101–NH2. Chemical Engineering Journal, 2020:125224

3.      Ohore, O. E. and Songhe, Z. (2019). Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Scientific African, 5: e00135.

4.      Goldinger, D. M., Demierre, A. L., Zoller, O., Rupp, H., Reinhard, H. and Magnin, R. (2015). Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regulatory Toxicology and Pharmacology, 71: 453-462.

5.      Banaderakhshan, R., Kemp, P., Breul, L., Steinbichl, P., Hartmann, C. and Fürhacker, M. (2022). Bisphenol A and its alternatives in Austrian thermal paper receipts, and the migration from reusable plastic drinking bottles into water and artificial saliva using UHPLC–MS/MS. Chemosphere, 286: 131842.

6.      Ginter–Kramarczyk, D., Zembrzuska, J., Kruszelnicka, I., Zając–Woźnialis, A. and Ciślak, M. (2020). Influence of temperature on the quantity of bisphenol A in bottled drinking water. International Journal of Environmental Research and Public Health. 19(9): 5710.

7.      Ali, M., Jaghbir, M., Salam, M., Al–Kadamany, G., Damsees, R. and Al–Rawashdeh, N. (2018). Testing baby bottles for the presence of residual and migrated bisphenol A. Environmental Monitoring & Assessment, 191(1): 1-7.

8.      Abraham, A. and Chakraborty, P. (2020) A review on sources and health impacts of bisphenol A. Reviews on Environmental Health, 35(2): 201-210.

9.      Han, C. and Hong, Y. C. (2016). Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Current hypertension reports, 18:1-11.

10.    Singh, N. (2016). Exposure to bisphenol–A through excess use of polymer, with environmental toxicity. International Journal of Scientific Research in Science, Engineering, and Technology, 2: 454-457.

11     Adamakis, I. S., Malea, P. and Panteris, E. (2018). The effects of bisphenol A on the seagrass Cymodocea nodosa: Leaf elongation impairment and cytoskeleton disturbance. Ecotoxicology and Environmental Safety,157: 431-440.

12.    Pettamanna, A., Raghav, D. and Nair, R. H. (2020). Hepatic toxicity in Etroplus suratensis (Bloch 1790): An economically important edible fish in Vembanad fresh water Lake, Kerala, India. Bulletin of Environmental Contamination and Toxicology, 105(4): 565-571.

13.    Samanidou, V. F. and Deliyanni, E. A. (2020). Metal organic frameworks: Synthesis and application. Molecules, 25(4): 960.

14.    Tibbetts, I. and Kostakis, G. E. (2020). Recent bio–advances in metal–organic frameworks. Molecules, 25(6): 1291.

15.    Wang, L. C., Ni, X. J., Cao, Y. H. and Cao, G. Q. (2018). Adsorption behavior of bisphenol A on CTAB–modified graphite. Applied Surface Science, 428: 165-170.

16.    Hoseinpour, V. and Shariatinia, Z. (2021). Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review. Tissue and Cell, 72: 101588.

17.    Zango, Z. U., Sambudi, N. S., Jumbri, K., Ramli, A., Hanif Abu Bakar N. H., Saad B., Rozaini, M. N. H., Isiyaka, H. A., Osman, A. M., and Sulieman, A. (2020). An overview and evaluation of highly porous adsorbent materials for polycyclic aromatic hydrocarbons and phenols removal from wastewater. Water, 2020: 1-40.

18.    Zango, Z. U., Sambudi, N. S., Jumbri, K., Ramli, A., Hanif Abu Bakar, N. H., Saad, B., Rozaini, M. N. H., Isiyaka, H. A., Osman, A. M. and Sulieman, A. (2020). A critical review on metal–organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater. Polymers, 12: 264.

19.    Ighalo, J. O., Rangabhashiyam, S., Adeyanju, C. A., Ogunniyi, S., Adeniyi, A. G. and Igwegbe, C. A. (2022). Zeolitic Imidazolate Frameworks (ZIFs) for aqueous phase adsorption – A review. Journal of Industrial and Engineering Chemistry, 105: 34-48.

20.    Peng, S., Hao, K., Han, F., Tang, Z., Niu, B., Zhang, X. and Hong, S. (2015). Enhanced removal of bisphenol–AF onto chitosan–modified zeolite by sodium cholate in aqueous solutions. Carbohydrate Polymers, 130: 364-371.

21.    Genç, N., Kılıçoğlu, Ö. and Narci, A. O. (2016). Removal of bisphenol A aqueous solution using surfactant–modified natural zeolite: Taguchi’s experimental design, adsorption kinetic, equilibrium, and thermodynamic study. Environmental Technology, 38(4): 424-432.

22.    Wang, H., Gao, J., Liu, W., Zhang, M. and Guo, M. (2016). Recovery of metal–doped zinc ferrite from zinc–containing electric arc furnace dust: Process development and examination of elemental migration. Hydrometallurgy, 166: 1-8.

23.    Peng, J., Li, Y., Sun, X., Huang, C., Jin, J., Wang, J. and Chen, J. (2019). controlled manipulation of metal–organic framework layers to nanometer precision inside large mesochannels of ordered mesoporous silica for enhanced removal of bisphenol A from water. ACS Applied Materials & Interfaces, 11(4): 4328-4337.

24.    Bandura, L., Białoszewska, M., Malinowski, S. and Franus, W. (2021). Adsorptive performance of fly ash–derived zeolite modified by β–cyclodextrin for ibuprofen, bisphenol A and caffeine removal from aqueous solutions–equilibrium and kinetic study. Applied Surface Science, 56: 150160.

25.    Mahmad A., Shaharun M., Noh T. U., Zango Z. U. and Faisal M. (2022). Experimental and molecular modelling approach for rapid adsorption of bisphenol A using Zr and Fe–based metal–organic frameworks. Inorganic Chemistry Communication. 142(2022): 109604.

26.    Mahmad, A., Shaharun, M. S., Zango, Z. U., Noh, T. U. and Saad, B. (2021). Adsorptive removal of bisphenol a using zeolitic imidazolate framework (ZIF–8). In: Abdul Karim, S. A., Abd Shukur, M. F., Fai Kait, C., Soleimani, H., Sakidin, H. (eds) Proceedings of the 6th International Conference on Fundamental and Applied Sciences. Springer Proceedings in Complexity. Springer, Singapore.

27.    Molavi, H., Hakimian, A., Shojaei, A. and Raeiszadeh, M. (2018). Selective dye adsorption by highly water stable metal–organic framework: long term stability analysis in aqueous media. Applied Surface Science, 445: 424–436.

28.    Oveisi, M., Mahmoodi, N. M. and Asli, M. A. (2019). Facile and green synthesis of metal–organic framework/inorganic nanofiber using electrospinning for recyclable visible–light photocatalysis. Journal of Cleaner Production, 222: 669-684.

29.    Yu, L., Cheng, J., Yang, H., Lv, J., Wang, P., Li, J. R. and Su, X. (2021). Simultaneous adsorption and determination of bisphenol compounds in water medium with a Zr(IV)–based metal–organic framework. Microchimica Acta, 188(3): 83.

30.    Zango, Z. U., Sambudi N. S., Jumbri, K., Abu Bakar, N. H., Abdullah, N. A. F., Negim, E. S. M. and Saad, B. (2020). Experimental and molecular docking model studies for the adsorption of polycyclic aromatic hydrocarbons onto UiO−66 (Zr) and NH2−UiO−66 (Zr) metal−organic frameworks. Chemical Engineering Science, 220: 115608.

31.    Groom, C. R., Bruno, I. J., Lightfoot, M. P. and Ward, S. C. (2016). The Cambridge structural database. Acta Crystallographica Section B, 72: 171-179.

32.    Zango, Z. U., Bakar, N. H. H. A., Sambudi, N. S., Jumbri, K., Abdullah, N. A. F., Kadir, E. A. and Saad, B. (2020). Adsorption of chrysene in aqueous solution onto MIL-88 (Fe) and NH2-MIL-88 (Fe) metal-organic frameworks: Kinetics, isotherms, thermodynamics and docking simulation studies. Journal of Environmental Chemical Engineering8(2): 103544.

33.    Xiang, Y., Yan, H., Zheng, B., Faheem, A., Chen, W. and Hu, Y. (2021). E. coli@ UiO−67 composites as a recyclable adsorbent for bisphenol A removal. Chemosphere, 270: 128672.

34.    Libbrecht, W., Vandaele, K., De Buysser, K., Verberckmoes, A., Thybaut, J., Poelman, H., Van Der Voort, P. (2015). Tuning the pore geometry of ordered mesoporous carbons for enhanced adsorption of bisphenol A. Materials, 8(4): 1652-1665.

35.    Berhane, T. M., Levy, J., Krekeler, M. P. S., and Danielson, N. D. (2016). Adsorption of bisphenol A and ciprofloxacin by palygorskite–montmorillonite: Effect of granule size, solution chemistry, and temperature. Applied Clay Science, 132-133: 518-527.