Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 953 - 964

 

DISPERSIVE MICRO-SOLID-PHASE EXTRACTION (D-µ-SPE) WITH POLYPYRROLE-GRAPHENE OXIDE (PPY-GO) NANOCOMPOSITE SORBENT FOR THE DETERMINATION OF TETRACYCLINE ANTIBIOTICS IN WATER SAMPLES

 

(Pengekstrakan Fasa-Pepejal-Mikro Secara Serakan (D-µ-SPE) menggunakan Polipirol-Grafin Oksida (Ppy-GO) Penjerap Nanokomposit bagi Penentuan Antibiotik Tetrasiklin dalam Sampel Air)

 

Nurzaimah Zaini1, Nor Suhaila Mohamad Hanapi1*, Wan Nazihah Wan Ibrahim1, Rozita Osman1,

Sazlinda Kamaruzaman2, Noorfatimah Yahaya3, Ahmad Lutfi Anis4

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Chemistry,

Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

3Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI),

Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia

4Faculty of Applied Sciences,

Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia

 

*Corresponding author: norsuhaila979@uitm.edu.my

 

 

Received: 18 May 2022; Accepted: 21 July 2022; Published:  30 October 2022

 

 

Abstract

Dispersive micro-solid-phase extraction (D-µ-SPE) method using polypyrrole-graphene oxide (PPy-GO) nanocomposite sorbent has been developed for the extraction and pre-concentration of tetracycline antibiotics (TCs) residues, namely oxytetracycline (OTC), tetracycline (TC), chlortetracycline (CTC), demeclocycline (DMC) and doxycycline (DOC) in water samples prior to high-performance liquid chromatography-ultraviolet/diode array detector (HPLC-UV/DAD). The PPy-GO nanocomposite was prepared by in situ oxidative chemical polymerization. The effects of sample pH, a mass of sorbent, desorption solvent, extraction time and desorption time on the extraction of analytes were evaluated and optimized. Under the optimum conditions, the method demonstrated good linearity (R2=0.9989-0.9995) over a concentration range of 10-1000 µg L-1. The limit of detection (LOD) was in the range of 4.9-8.7 µg L-1 with satisfactory relative recoveries (80 105 %) and a good relative standard deviation (RSD) of 2.3 % (n = 3) was obtained. The method was successfully applied to river water and tap water samples. Results obtained using the developed method were compared with results previously reported using other SPE-based methods.

 

Keywords: tetracycline antibiotics, PPy-GO, dispersive micro-solid-phase extraction, liquid chromatography, water samples

 

Abstrak

Kaedah pengekstrakan fasa-pepejal-mikro secara serakan (D-µ-SPE) menggunakan penjerap nanokomposit polipirol- grafin oksida (PPy-GO) telah dibangunkan untuk pengekstrakan dan pra-pemekatan sisa antibiotik tetrasiklin (TCs), iaitu oksitetrasiklin (OTC), tetrasiklin (TC), klortetrasiklin (CTC), demeklosiklin (DMC) dan doksisiklin (DOC) di dalam sampel air sebelum kromatografi cecair berprestasi tinggi-pengesan tatasusunan ultraungu/diod (HPLC-UV/DAD). Nanokomposit PPy-GO telah disediakan melalui pempolimeran oksidatif kimia in situ. Kesan pH sampel, jisim penjerap, pelarut nyahjerapan, masa pengekstrakan dan masa nyahjerapan pada pengekstrakan analit telah dinilai dan dioptimumkan. Di bawah keadaan optimum, kaedah menunjukkan kelinearan yang baik (R2=0.9989-0.9995) dalam julat kepekatan 10-1000 µg L-1. Had pengesanan (LOD) adalah dalam julat 4.9-8.7 µg L-1 dengan pemulihan relatif yang memuaskan (80-105%) dan sisihan piawai relatif (RSD) yang baik sebanyak ≤ 2.3% (n = 3) telah diperoleh. Kaedah tersebut berjaya diaplikasikan pada sampel air sungai dan air paip. Keputusan yang diperoleh menggunakan kaedah yang dibangunkan dibandingkan dengan keputusan yang dilaporkan sebelum ini menggunakan kaedah berasaskan SPE yang lain.

 

Kata kunci: antibiotik tetrasiklin, Ppy-GO, pengekstrakan fasa-pepejal-mikro secara dispersif, kromatografi cecair, sampel air

 


 


References

1.         Tam, V. C., Suen, R., Treuting, P. M., Armando, A., Lucarelli, R., Gorrochotegui-Escalante, N., Diercks, A. H., Quehenberger, O., Dennis, E. A., Aderem, A. and Gold, E. S. (2020). PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proceedings of the National Academy of Sciences, 117(27): 15789-15798.

2.         Aminov, R. I. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, 1: 134.

3.         Tsai, W. H., Huang, T. C., Huang, J. J., Hsue, Y. H. and Chuang, H. Y. (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. Journal of Chromatography A, 1216 (12): 2263 - 2269.

4.         Chopra, I. and Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2): 232-260.

5.         Chang, X., Meyer, M. T., Liu, X., Zhao, Q., Chen, H., Chen, J. A., Qiu, Z., Yang, L., Cao, J. and Shu, W. (2010). Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution, 158(5): 1444-1450.

6.         Xu, J. J., An, M., Yang, R., Tan, Z., Hao, J., Cao, J., Peng, L.Q. and Cao, W. (2016). Determination of tetracycline antibiotic residues in honey and milk by miniaturized solid-phase extraction using chitosan-modified graphitized multiwalled carbon nanotubes. Journal of Agricultural and Food Chemistry, 64(12): 2647 - 2654.

7.         Choi, K. J., Kim, S. G., Kim, C. W. and Kim, S. H. (2007). Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere, 66(6): 977-984.

8.         Wang, Z., Wang, X., Tian, H., Wei, Q., Liu, B., Bao, G., Liao, M., Peng, J., Huang, X. and Wang, L. (2019). High through-put determination of 28 veterinary antibiotic residues in swine wastewater by one-step dispersive solid phase extraction sample cleanup coupled with ultra-performance liquid chromatography-tandem mass spectrometry. Chemosphere, 230: 337-346.

9.         Zhi, S., Zhou, J., Liu, H., Wu, H., Zhang, Z., Ding, Y. and Zhang, K. (2020). Simultaneous extraction and determination of 45 veterinary antibiotics in swine manure by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1154: 122286.

10.      Araby, E., Nada, H. G., Abou El-Nour, S. A. and Hammad, A. (2020). Detection of tetracycline and streptomycin in beef tissues using Charm II, isolation of relevant resistant bacteria and control their resistance by gamma radiation. BMC Microbiology, 20(1): 1-11.

11.      Saleh, H., Elhenawee, M., Hussien, E. M., Ahmed, N. and Ibrahim, A. E. (2021). Validation of HPLC-UV multi-residue method for the simultaneous determination of tetracycline, oxytetracycline, spiramycin and neospiramycin in raw milk. Food Analytical Methods, 14(1): 36-43.

12.      Galyautdinova, G. G., Egorov, V. I., Saifutdinov, A. M., Rakhmetova, E. R., Malanev, A. V., Aleyev, D. V., Smolentsev, S.Y. and Semenov, E. I. (2020). Detection of tetracycline antibiotics in honey using high-performance liquid chromatography. International Journal of Research in Pharmaceutical Sciences, 11 (1): 311-314.

13.      Ma, Z., Liu, J., Li, H., Zhang, W., Williams, M. A., Gao, Y., Gudda, F.O., Lu, C., Yang, B. and Waigi, M. G. (2019). A fast and easily parallelizable biosensor method for measuring extractable tetracyclines in soils. Environmental Science & Technology, 54(2): 758-767.

14.      Feng, Y., Wei, C., Zhang, W., Liu, Y., Li, Z., Hu, H., Xue, J. and Davis, M. (2016). A simple and economic method for simultaneous determination of 11 antibiotics in manure by solid-phase extraction and high-performance liquid chromatography. Journal of Soils and Sediments, 16(9): 2242-2251.

15.      Sereshti, H., Karami, F., Nouri, N. and Farahani, A. (2021). Electrochemically controlled solid phase microextraction based on a conductive polyanilinegraphene oxide nanocomposite for extraction of tetracyclines in milk and water. Journal of the Science of Food and Agriculture, 101(6): 2304-2311.

16.      Desmarchelier, A., Anizan, S., Minh Tien, M., Savoy, M. C. and Bion, C. (2018). Determination of five tetracyclines and their epimers by LC-MS/MS based on a liquid-liquid extraction with low temperature partitioning. Food Additives & Contaminants: Part A, 35(4): 687-695.

17.      Andreu, V., Vazquez-Roig, P., Blasco, C. and Picó, Y. (2009). Determination of tetracycline residues in soil by pressurized liquid extraction and liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 394(5): 1329-1339.

18.      Sadutto, D. and Picó, Y. (2020). Sample preparation to determine pharmaceutical and personal care products in an all-water matrix: solid phase extraction. Molecules, 25(21): 5204.

19.      Yang, S., Cha, J. and Carlson, K. (2005). Simultaneous extraction and analysis of 11 tetracycline and sulfonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1097 (1-2): 40-53.

20.      Dzomba, P., Kugara, J. and Zaranyika, M. F. (2015). Extraction of tetracycline antimicrobials from river water and sediment: a comparative study of three solid phase extraction methods. African Journal of Pharmacy and Pharmacology, 9(19): 523-531.

21.      Azzouz, A., Kailasa, S. K., Lee, S. S., Rascón, A. J., Ballesteros, E., Zhang, M. and Kim, K. H. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry108: 347-369.

22.      Yu, H., Zhang, B., Bulin, C., Li, R. and Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved Hummers method. Scientific reports6(1): 1-7.

23.      Caro, E., Marce, R. M., Cormack, P. A. G., Sherrington, D. C. and Borrull, F. (2005). Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Analytica Chimica Acta552(1-2): 81-86.

24.      Arabsorkhi, B. and Sereshti, H. (2018). Determination of tetracycline and cefotaxime residues in honey by micro-solid phase extraction based on electrospun nanofibers coupled with HPLC. Microchemical Journal140: 241-247.

25.      Niu, H., Cai, Y., Shi, Y., Wei, F., Liu, J., Mou, S. and Jiang, G. (2007). Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Analytica Chimica Acta594(1): 81-92.

26.      Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306 (5696): 666-669.

27.      Hartono, T., Wang, S., Ma, Q. and Zhu, Z. (2009). Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science, 333(1): 114-119.

28.      Guo, R., Jiao, T., Li, R., Chen, Y., Guo, W., Zhang, L., Zhou, J., Zhang, Q. and Peng, Q. (2018). Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal. ACS Sustainable Chemistry & Engineering, 6(1): 1279-1288.

29.      Xue, J., Sun, Q., Zhang, Y., Mao, W., Li, F. and Yin, C. (2020). Preparation of a polypyrrole/graphene oxide composite electrode by electrochemical codeposition for capacitor deionization. ACS Omega, 5(19): 10995-11004.

30.      Demirkan, B., Bozkurt, S., Cellat, K., Arıkan, K., Yılmaz, M., Şavk, A., Çalımlı, M.H., Nas, M.S., Atalar, M.N., Alma, M.H. and Sen, F. (2020). Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid. Scientific Reports, 10 (1): 1-10.

31.      Sheng, Q., Liu, D. and Zheng, J. (2016). NiCo alloy nanoparticles anchored on polypyrrole/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. New Journal of Chemistry, 40(8): 6658-6665.

32.      Othman, N. Z., Hanapi, N. S. M., Ibrahim, W. N. W. and Saleh, S. H. (2020). Alginate incorporated multi-walled carbon nanotubes as dispersive micro solid phase extraction sorbent for selective and efficient separation of acidic drugs in water samples. Nature Environment & Pollution Technology, 19(3): 1155-1162.

33.      Tong, L., Li, P., Wang, Y. and Zhu, K. (2009). Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 74(8): 1090-1097.

34.      Seifrtova, M., Novakova, L., Lino, C., Pena, A. and Solich, P. (2009). An overview of analytical methodologies for the determination of antibiotics in environmental waters. Analytica Chimica Acta, 649 (2): 158-179.

35.      Qiang, Z. and Adams, C. (2004). Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 38(12): 2874-2890.

36.      Sassman, S. A. and Lee, L. S. (2005). Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 39(19): 7452-7459.

37.      Azouaoua, N., Belmedanib, M., Mokaddema, H. and Sadaoui, Z. (2013). Adsorption of lead from aqueous solution onto untreated orange barks. Chemical Engineering Transactions, 2013: 32.

38.      Loh, S. H., Sanagi, M. M., Ibrahim, W. A. W. and Hasan, M. N. (2013). Multi-walled carbon nanotube-impregnated agarose film microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta, 106: 200-205.

39.      Talebpour, Z., Taraji, M. and Adib, N. (2012). Stir bar sorptive extraction and high performance liquid chromatographic determination of carvedilol in human serum using two different polymeric phases and an ionic liquid as desorption solvent. Journal of Chromatography A, 1236: 1-6.

40.      Ghati, S. K. (2017). Removal of chlorpyrifos (dursban) pesticide from aqueous solutions using barley husks. Ibn Al-Haitham Journal for Pure and Applied Science, 29(3): 54-68.

41.      Al-Afy, N., Sereshti, H., Hijazi, A. and Nodeh, H. R. (2018). Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC. Journal of Chromatography B, 1092: 480-488.

42.      Wu, X. J., Wang, G. N., Yang, K., Liu, H. Z. and Wang, J. P. (2017). Determination of tetracyclines in milk by graphene-based solid-phase extraction and high-performance liquid chromatography. Analytical Letters, 50(4): 641-650.

43.      Lian, L., Lv, J., Wang, X. and Lou, D. (2018). Magnetic solid–phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples. Journal of Chromatography A, 1534: 1-9.

44.      Wilkowska, A. and Biziuk, M. (2011). Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 125(3): 803-812.