Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 953 - 964
DISPERSIVE MICRO-SOLID-PHASE
EXTRACTION (D-µ-SPE) WITH POLYPYRROLE-GRAPHENE OXIDE (PPY-GO) NANOCOMPOSITE
SORBENT FOR THE DETERMINATION OF TETRACYCLINE ANTIBIOTICS IN WATER SAMPLES
(Pengekstrakan Fasa-Pepejal-Mikro Secara Serakan (D-µ-SPE) menggunakan Polipirol-Grafin
Oksida (Ppy-GO) Penjerap Nanokomposit bagi Penentuan Antibiotik Tetrasiklin
dalam Sampel Air)
Nurzaimah Zaini1, Nor
Suhaila Mohamad Hanapi1*, Wan Nazihah Wan Ibrahim1,
Rozita Osman1,
Sazlinda Kamaruzaman2, Noorfatimah
Yahaya3, Ahmad Lutfi Anis4
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
2Department of Chemistry,
Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor,
Malaysia
3Integrative Medicine Cluster,
Advanced Medical and Dental Institute (AMDI),
Universiti Sains Malaysia, 13200
Bertam Kepala Batas, Penang, Malaysia
4Faculty of Applied Sciences,
Universiti Teknologi MARA, 94300 Kota
Samarahan, Sarawak, Malaysia
*Corresponding author:
norsuhaila979@uitm.edu.my
Received: 18 May 2022; Accepted: 21
July 2022; Published: 30 October 2022
Abstract
Dispersive
micro-solid-phase extraction (D-µ-SPE) method using polypyrrole-graphene
oxide (PPy-GO) nanocomposite sorbent has been
developed for the extraction and pre-concentration of tetracycline antibiotics
(TCs) residues, namely oxytetracycline (OTC), tetracycline (TC),
chlortetracycline (CTC), demeclocycline (DMC) and doxycycline (DOC) in water
samples prior to high-performance liquid chromatography-ultraviolet/diode array
detector (HPLC-UV/DAD). The PPy-GO nanocomposite was
prepared by in situ oxidative chemical polymerization. The effects of
sample pH, a mass of sorbent, desorption solvent, extraction time and
desorption time on the extraction of analytes were evaluated and optimized.
Under the optimum conditions, the method demonstrated good linearity (R2=0.9989-0.9995)
over a concentration range of 10-1000 µg L-1. The limit of detection
(LOD) was in the range of 4.9-8.7 µg L-1 with satisfactory relative
recoveries (80 – 105 %) and a good
relative standard deviation (RSD) of ≤
2.3 % (n = 3) was obtained. The method was successfully applied to river water
and tap water samples. Results obtained using the developed method were
compared with results previously reported using other SPE-based methods.
Keywords: tetracycline antibiotics, PPy-GO,
dispersive micro-solid-phase extraction, liquid chromatography, water samples
Abstrak
Kaedah pengekstrakan fasa-pepejal-mikro secara serakan
(D-µ-SPE) menggunakan penjerap nanokomposit polipirol- grafin oksida (PPy-GO) telah dibangunkan untuk pengekstrakan
dan pra-pemekatan sisa antibiotik tetrasiklin (TCs), iaitu oksitetrasiklin
(OTC), tetrasiklin (TC), klortetrasiklin (CTC), demeklosiklin (DMC) dan
doksisiklin (DOC) di dalam sampel air sebelum kromatografi cecair berprestasi
tinggi-pengesan tatasusunan ultraungu/diod (HPLC-UV/DAD). Nanokomposit PPy-GO
telah disediakan melalui pempolimeran oksidatif kimia in situ. Kesan pH
sampel, jisim penjerap, pelarut nyahjerapan, masa pengekstrakan dan masa
nyahjerapan pada pengekstrakan analit telah dinilai dan dioptimumkan. Di bawah
keadaan optimum, kaedah menunjukkan kelinearan yang baik (R2=0.9989-0.9995)
dalam julat kepekatan 10-1000 µg L-1. Had pengesanan (LOD) adalah
dalam julat 4.9-8.7 µg L-1 dengan pemulihan relatif yang memuaskan
(80-105%) dan sisihan piawai relatif (RSD) yang baik sebanyak ≤ 2.3% (n =
3) telah diperoleh. Kaedah tersebut berjaya diaplikasikan pada sampel air
sungai dan air paip. Keputusan yang diperoleh menggunakan kaedah yang
dibangunkan dibandingkan dengan keputusan yang dilaporkan sebelum ini
menggunakan kaedah berasaskan SPE yang lain.
Kata kunci: antibiotik tetrasiklin, Ppy-GO,
pengekstrakan fasa-pepejal-mikro secara dispersif, kromatografi cecair, sampel
air
References
1.
Tam,
V. C., Suen, R., Treuting, P. M., Armando, A.,
Lucarelli, R., Gorrochotegui-Escalante, N., Diercks, A. H., Quehenberger, O.,
Dennis, E. A., Aderem, A. and Gold, E. S. (2020).
PPARα exacerbates necroptosis, leading to increased mortality in postinfluenza bacterial superinfection. Proceedings of the National Academy of
Sciences, 117(27): 15789-15798.
2.
Aminov, R. I. (2010). A brief history of the antibiotic
era: lessons learned and challenges for the future. Frontiers in Microbiology, 1: 134.
3.
Tsai,
W. H., Huang, T. C., Huang, J. J., Hsue, Y. H. and
Chuang, H. Y. (2009). Dispersive solid-phase microextraction method for sample
extraction in the analysis of four tetracyclines in water and milk samples by
high-performance liquid chromatography with diode-array detection. Journal of Chromatography A, 1216 (12):
2263 - 2269.
4.
Chopra,
I. and Roberts, M. (2001). Tetracycline antibiotics: mode of action,
applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews,
65(2): 232-260.
5.
Chang,
X., Meyer, M. T., Liu, X., Zhao, Q., Chen, H., Chen, J. A., Qiu,
Z., Yang, L., Cao, J. and Shu, W. (2010). Determination of antibiotics in
sewage from hospitals, nursery and slaughter house, wastewater treatment plant
and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution, 158(5):
1444-1450.
6.
Xu,
J. J., An, M., Yang, R., Tan, Z., Hao, J., Cao, J., Peng, L.Q. and Cao, W.
(2016). Determination of tetracycline antibiotic residues in honey and milk by
miniaturized solid-phase extraction using chitosan-modified graphitized multiwalled
carbon nanotubes. Journal of Agricultural
and Food Chemistry, 64(12): 2647 - 2654.
7.
Choi,
K. J., Kim, S. G., Kim, C. W. and Kim, S. H. (2007). Determination of
antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere, 66(6): 977-984.
8.
Wang,
Z., Wang, X., Tian, H., Wei, Q., Liu, B., Bao, G., Liao, M., Peng, J., Huang,
X. and Wang, L. (2019). High through-put determination of 28 veterinary
antibiotic residues in swine wastewater by one-step dispersive solid phase
extraction sample cleanup coupled with ultra-performance liquid
chromatography-tandem mass spectrometry. Chemosphere,
230: 337-346.
9.
Zhi,
S., Zhou, J., Liu, H., Wu, H., Zhang, Z., Ding, Y. and Zhang, K. (2020).
Simultaneous extraction and determination of 45 veterinary antibiotics in swine
manure by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1154: 122286.
10.
Araby, E., Nada, H. G., Abou El-Nour, S. A. and Hammad,
A. (2020). Detection of tetracycline and streptomycin in beef tissues using
Charm II, isolation of relevant resistant bacteria and control their resistance
by gamma radiation. BMC Microbiology,
20(1): 1-11.
11.
Saleh,
H., Elhenawee, M., Hussien,
E. M., Ahmed, N. and Ibrahim, A. E. (2021). Validation of HPLC-UV multi-residue
method for the simultaneous determination of tetracycline, oxytetracycline, spiramycin and neospiramycin in
raw milk. Food Analytical Methods,
14(1): 36-43.
12.
Galyautdinova, G. G., Egorov, V. I., Saifutdinov, A. M., Rakhmetova,
E. R., Malanev, A. V., Aleyev,
D. V., Smolentsev, S.Y. and Semenov, E. I. (2020).
Detection of tetracycline antibiotics in honey using high-performance liquid
chromatography. International Journal of
Research in Pharmaceutical Sciences, 11 (1): 311-314.
13.
Ma,
Z., Liu, J., Li, H., Zhang, W., Williams, M. A., Gao, Y., Gudda,
F.O., Lu, C., Yang, B. and Waigi, M. G. (2019). A
fast and easily parallelizable biosensor method for measuring extractable
tetracyclines in soils. Environmental
Science & Technology, 54(2): 758-767.
14.
Feng,
Y., Wei, C., Zhang, W., Liu, Y., Li, Z., Hu, H., Xue,
J. and Davis, M. (2016). A simple and economic method for simultaneous
determination of 11 antibiotics in manure by solid-phase extraction and
high-performance liquid chromatography. Journal
of Soils and Sediments, 16(9): 2242-2251.
15.
Sereshti, H., Karami, F., Nouri,
N. and Farahani, A. (2021). Electrochemically controlled solid phase
microextraction based on a conductive polyaniline‐graphene oxide nanocomposite for extraction of
tetracyclines in milk and water. Journal
of the Science of Food and Agriculture, 101(6): 2304-2311.
16.
Desmarchelier, A., Anizan, S., Minh
Tien, M., Savoy, M. C. and Bion, C. (2018).
Determination of five tetracyclines and their epimers by LC-MS/MS based on a
liquid-liquid extraction with low temperature partitioning. Food Additives & Contaminants: Part A,
35(4): 687-695.
17.
Andreu,
V., Vazquez-Roig, P., Blasco,
C. and Picó, Y. (2009). Determination of tetracycline
residues in soil by pressurized liquid extraction and liquid chromatography
tandem mass spectrometry. Analytical and
Bioanalytical Chemistry, 394(5): 1329-1339.
18.
Sadutto, D. and Picó, Y. (2020).
Sample preparation to determine pharmaceutical and personal care products in an
all-water matrix: solid phase extraction. Molecules,
25(21): 5204.
19.
Yang,
S., Cha, J. and Carlson, K. (2005). Simultaneous extraction and analysis of 11
tetracycline and sulfonamide antibiotics in influent and effluent domestic
wastewater by solid-phase extraction and liquid chromatography-electrospray
ionization tandem mass spectrometry. Journal
of Chromatography A, 1097 (1-2): 40-53.
20.
Dzomba, P., Kugara, J. and Zaranyika, M. F. (2015). Extraction of tetracycline
antimicrobials from river water and sediment: a comparative study of three
solid phase extraction methods. African
Journal of Pharmacy and Pharmacology, 9(19): 523-531.
21.
Azzouz, A., Kailasa, S. K.,
Lee, S. S., Rascón, A. J., Ballesteros, E., Zhang, M.
and Kim, K. H. (2018). Review of nanomaterials as sorbents in solid-phase
extraction for environmental samples. TrAC
Trends in Analytical Chemistry, 108:
347-369.
22.
Yu,
H., Zhang, B., Bulin, C., Li, R. and Xing, R. (2016).
High-efficient synthesis of graphene oxide based on improved Hummers
method. Scientific reports, 6(1): 1-7.
23.
Caro,
E., Marce, R. M., Cormack, P. A. G., Sherrington, D.
C. and Borrull, F. (2005). Synthesis and application
of an oxytetracycline imprinted polymer for the solid-phase extraction of
tetracycline antibiotics. Analytica Chimica
Acta, 552(1-2): 81-86.
24.
Arabsorkhi, B. and Sereshti, H.
(2018). Determination of tetracycline and cefotaxime residues in honey by
micro-solid phase extraction based on electrospun
nanofibers coupled with HPLC. Microchemical Journal, 140: 241-247.
25.
Niu,
H., Cai, Y., Shi, Y., Wei, F., Liu, J., Mou, S. and
Jiang, G. (2007). Evaluation of carbon nanotubes as a solid-phase extraction
adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and
phenolic compounds from aqueous solution. Analytica Chimica
Acta, 594(1): 81-92.
26.
Novoselov, K. S., Geim, A. K.,
Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S.
V., Jiang, D.E., Zhang, Y., Dubonos, S.V.,
Grigorieva, I.V. and Firsov, A. A. (2004). Electric
field effect in atomically thin carbon films. Science, 306 (5696): 666-669.
27.
Hartono,
T., Wang, S., Ma, Q. and Zhu, Z. (2009). Layer structured graphite oxide as a
novel adsorbent for humic acid removal from aqueous
solution. Journal of Colloid and
Interface Science, 333(1): 114-119.
28.
Guo,
R., Jiao, T., Li, R., Chen, Y., Guo, W., Zhang, L., Zhou, J., Zhang, Q. and
Peng, Q. (2018). Sandwiched Fe3O4/carboxylate graphene
oxide nanostructures constructed by layer-by-layer assembly for highly
efficient and magnetically recyclable dye removal. ACS Sustainable Chemistry & Engineering, 6(1): 1279-1288.
29.
Xue,
J., Sun, Q., Zhang, Y., Mao, W., Li, F. and Yin, C. (2020). Preparation of a polypyrrole/graphene oxide composite electrode by
electrochemical codeposition for capacitor
deionization. ACS Omega, 5(19):
10995-11004.
30.
Demirkan, B., Bozkurt, S., Cellat,
K., Arıkan, K., Yılmaz,
M., Şavk, A., Çalımlı,
M.H., Nas, M.S., Atalar,
M.N., Alma, M.H. and Sen, F. (2020). Palladium supported on polypyrrole/reduced
graphene oxide nanoparticles for simultaneous biosensing application of
ascorbic acid, dopamine, and uric acid. Scientific
Reports, 10 (1): 1-10.
31.
Sheng,
Q., Liu, D. and Zheng, J. (2016). NiCo alloy
nanoparticles anchored on polypyrrole/reduced
graphene oxide nanocomposites for nonenzymatic glucose sensing. New Journal of Chemistry, 40(8):
6658-6665.
32.
Othman,
N. Z., Hanapi, N. S. M., Ibrahim, W. N. W. and Saleh,
S. H. (2020). Alginate incorporated multi-walled carbon nanotubes as dispersive
micro solid phase extraction sorbent for selective and efficient separation of
acidic drugs in water samples. Nature
Environment & Pollution Technology, 19(3): 1155-1162.
33.
Tong,
L., Li, P., Wang, Y. and Zhu, K. (2009). Analysis of veterinary antibiotic
residues in swine wastewater and environmental water samples using optimized
SPE-LC/MS/MS. Chemosphere, 74(8):
1090-1097.
34.
Seifrtova, M., Novakova, L., Lino,
C., Pena, A. and Solich, P. (2009). An overview of
analytical methodologies for the determination of antibiotics in environmental
waters. Analytica Chimica
Acta, 649 (2): 158-179.
35.
Qiang, Z. and Adams, C. (2004). Potentiometric
determination of acid dissociation constants (pKa) for
human and veterinary antibiotics. Water
Research, 38(12): 2874-2890.
36.
Sassman, S. A. and Lee, L. S. (2005). Sorption of three
tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology,
39(19): 7452-7459.
37.
Azouaoua, N., Belmedanib, M., Mokaddema, H. and Sadaoui, Z.
(2013). Adsorption of lead from aqueous solution onto untreated orange barks. Chemical Engineering Transactions, 2013:
32.
38.
Loh,
S. H., Sanagi, M. M., Ibrahim, W. A. W. and Hasan, M.
N. (2013). Multi-walled carbon nanotube-impregnated agarose film
microextraction of polycyclic aromatic hydrocarbons in green tea beverage. Talanta, 106:
200-205.
39.
Talebpour, Z., Taraji, M. and Adib,
N. (2012). Stir bar sorptive extraction and high performance liquid chromatographic determination of
carvedilol in human serum using two different polymeric phases and an ionic
liquid as desorption solvent. Journal of
Chromatography A, 1236: 1-6.
40.
Ghati, S. K. (2017). Removal of chlorpyrifos (dursban) pesticide from aqueous solutions using barley
husks. Ibn Al-Haitham Journal for Pure
and Applied Science, 29(3): 54-68.
41.
Al-Afy, N., Sereshti, H., Hijazi, A.
and Nodeh, H. R. (2018). Determination of three
tetracyclines in bovine milk using magnetic solid phase extraction in tandem
with dispersive liquid-liquid microextraction coupled with HPLC. Journal of Chromatography B, 1092:
480-488.
42.
Wu,
X. J., Wang, G. N., Yang, K., Liu, H. Z. and Wang, J. P. (2017). Determination
of tetracyclines in milk by graphene-based solid-phase extraction and
high-performance liquid chromatography. Analytical
Letters, 50(4): 641-650.
43.
Lian,
L., Lv, J., Wang, X. and Lou, D. (2018). Magnetic
solid–phase extraction of tetracyclines using ferrous oxide coated magnetic
silica microspheres from water samples. Journal
of Chromatography A, 1534: 1-9.
44.
Wilkowska, A. and Biziuk, M.
(2011). Determination of pesticide residues in food matrices using the QuEChERS methodology. Food
Chemistry, 125(3): 803-812.