Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 936 - 943
STRUCTURAL AND CONDUCTIVITY STUDIES
OF CHOLINE CHLORIDE-BASED DEEP EUTECTIC SOLVENT AS A POTENTIAL ELECTROLYTE IN
LITHIUM-ION BATTERIES
(Kajian Struktur dan Kekonduksian
Pelarut Eutektik Dalam Berasaskan Kolina Klorida yang Berpotensi sebagai
Elektrolit dalam Bateri Ion Litium)
Intan Qhuzairin Zaharuddin, Nabilah
Akemal Muhd Zailani*, Khuzaimah Nazir, Rizana Yusof,
Mohd Azlan Mohd Ishak
Fakulti Sains Gunaan,
Universiti
Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia
*Corresponding author:
nabilahakemal@uitm.edu.my
Received: 14 February 2022; Accepted:
18 August 2022 ; Published: 30 October
2022
Abstract
Utilizing volatile and flammable electrolytes in
lithium-ion batteries has become a primary concern worldwide. Consequently, a
safer high-performance electrolytes approach is required to solve the issue. In
this circumstance, deep eutectic solvent (DES) might be the best option to
substitute the harmful conventional liquid electrolytes. The present study
explores the potential of ternary DES, which comprises choline chloride (ChCl), 1,4-butanediol (1,4-BD), and lithium triflate (LiTf), as an electrolyte in lithium-ion batteries. The
structural and conductivity of ChCl/1,4-BD at 1:1,
1:2; and 1:3 mole ratios and ChCl/1,4-BD/LiTf at 2.5, 5, and 10 wt.% LiTf
systems were investigated. The ChCl/1,4-BD at 1:1
ratio (DES1:1) recorded the highest ionic conductivity of 2.41 mS cm−1,
which resulted from the least amount of hydrogen bonds between ChCl and 1,4-BD. Subsequently, the DES1:1 was doped with
different percentages of LiTf. The highest ionic
conductivity, 2.56 mS cm−1, was obtained from the ChCl/1,4-BD/2.5 wt.% LiTf system.
The elevated ionic conductivity was attributable to the high amount of mobile
lithium ions available due to fewer hydrogen bonds formed between the ChCl/1,4-BD and LiTf.
Conclusively, the highly conducting ChCl/1,4-BD/2.5
wt.% LiTf demonstrated the best potential for
application in lithium-ion batteries.
Keywords: deep
eutectic solvents, liquid electrolytes, lithium salts, ionic conductivity
Abstrak
Penggunaan elektrolit yang mudah meruap dan terbakar dalam
bateri ion litium merupakan isu utama di seluruh dunia. Oleh itu, elektrolit
yang berprestasi tinggi dengan pendekatan yang lebih selamat diperlukan bagi
menyelesaikan isu ini. Dalam keadaan ini, pelarut eutektik dalam (DES) dilihat
sebagai alternatif terbaik untuk menggantikan cecair elektrolit konvensional
yang berbahaya. Kajian ini meneroka potensi DES ternari yang terdiri daripada
kolina klorida (ChCl), 1,4-butanadiol (1,4-BD) dan litium triflat (LiTf)
sebagai elektrolit hijau dalam bateri ion litium. Struktur dan kekonduksian
bagi sistem dengan 1:1, 1:2; dan 1:3 nisbah mol ChCl/1,4-BD dan
ChCl/1,4-BD/LiTf dengan 2.5, 5, 10 wt.% LiTf telah dikaji. Sistem ChCl/1,4-BD
dengan 1:1 nisbah mol (DES1:1) telah menunjukkan kekonduksian ionik paling
tinggi, iaitu 2.41 mS cm−1,
yang terhasil daripada interaksi ikatan hidrogen yang rendah antara ChCl dengan
1,4-BD. Seterusnya, DES1:1 telah ditambah dengan LiTf pada peratusan yang
berbeza. Kekonduksian ionik yang tertinggi, iaitu 2.56 mS cm−1,
telah diperoleh sistem ChCl/1,4-BD/2.5 wt.% LiTf. Kekonduksian yang tinggi ini
disumbangkan oleh kehadiran ion litium bebas yang tinggi hasil daripada kurang
interaksi ikatan hidrogen antara ChCl/1,4-BD dengan LiTf. Kesimpulannya,
ChCl/1,4-BD/2.5 wt.% LiTf dengan kekonduksian yang tinggi menunjukkan potensi
terbaik untuk digunakan dalam bateri ion litium.
Kata kunci: pelarut
eutektik dalam, cecair elektrolit, garam litium, kekonduksian ionik
References
1.
Chen, T., Jin, Y., Lv, H., Yang,
A., Liu, M., Chen, B., Xie, Y. and Chen, Q. (2020). Applications of Lithium-Ion
Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin
University, 26(3): 208-217.
2.
Liu, K., Liu, Y., Lin, D.,
Pei, A. and Cui, Y. (2018). Materials for lithium-ion battery
safety. Science Advances, 4(6): eaas9820.
3.
Zubi, G., Dufo-López, R., Carvalho,
M. and Pasaoglu, G. (2018). The lithium-ion battery: State of the art and
future perspectives. Renewable and Sustainable Energy Reviews: 89:
292-308.
4.
Dhingra, D., Bhawna and Pandey, S.
(2018). Effect of lithium chloride on the density and dynamic viscosity of
choline chloride / urea deep eutectic solvent in the temperature range
(303.15-358.15)K. The Journal of Chemical Thermodynamics, 130: 166-172.
5.
Zhang, Q., Vigier, K. D. O., Royer,
S. and Jerome, F. (2012). Deep eutectic solvents: syntheses, properties and
applications. The Royal Society of Chemistry, 41(21): 7108-7146.
6.
Yusof, R., Abdulmalek, E., Sirat,
K. and Rahman, M. B. A. (2014). Tetrabutylammonium bromide (TBABr)-Based deep
eutectic solvents (DESs) and their physical properties. Molecules,
19(6): 8011-8026.
7.
Millia, L., Dall’Asta,
V., Ferrara, C., Berbenni, V., Quartarone,
E., Perna, F. M., Capriati, V. and Mustarelli, P. (2018). Bio-inspired choline chloride-based
deep eutectic solvents as electrolytes in for lithium-ion batteries. Solid State Ionics, 323: 44-48.
8.
Tomé, L. I. N., Baião, V., Silva,
W. and Brett, C. M. A. (2018). Deep eutectic solvents for the production and
application of new materials. Applied Materials Today, 10: 30-50.
9.
Boisset, A., Menne, S.,
Jacquemin, J., Balducci, A. and Anouti,
M. (2013). Deep
eutectic solvents based on N-methylacetamide and a
lithium salt as suitable electrolytes for lithium-ion batteries. Physical
Chemistry Chemical Physics, 15(46): 20054-20063.
10. Tomaszewska,
A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li,
R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M.,
Ouyang, M., Marinescu, M., Offer, G. and Wu, B. (2019). Lithium-ion battery
fast charging: A review. e-Transportation, 1: 100011.
11. Wang, Q.,
Jiang, L., Yu, Y. and Sun, J. (2019). Progress of enhancing the safety of
lithium ion battery from the electrolyte aspect. Nano Energy, 55:
93-114.
12. Shafie, M.,
Yusof, R. and Gan, C. (2019). Synthesis
of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and
characterization of their physicochemical properties. Journal of Molecular Liquids, 288: 111081.
13. Jesus, A.
J. L., Rosado, M. T. S., Reva, I., Fausto, R., Eusébio, M. E. S. and Redinha,
J. S. (2008). Structure of Isolated 1
, 4-Butanediol : Combination of MP2 calculations, NBO analysis, and
matrix-isolation infrared spectroscopy. The Journal of Physical
Chemistry A, 112(20): 4669-4678.
14. Wang, H.,
Liu, S., Zhao, Y., Wang, J. and Yu, Z. (2019). Insights into the hydrogen bond interactions in deep eutectic solvents
composed of choline chloride and polyols. ACS Sustainable Chemistry & Engineering, 7:
7760-7767.
15. Zhong,
M., Fang, Q., Wu, Y., Ying, X. and Jie, Z. (2020). An alternative electrolyte of deep
eutectic solvent by choline chloride and ethylene glycol for wide temperature
range supercapacitors. Journal of Power Sources, 452: 227847.
16. Dinh, T. T.
A., Huynh, T. T. K., Le, L. T. M., Truong, T. T. T., Nguyen, O. H., Tran, K. T.
T., Tran, M. V, Tran, P. H., Kaveevivitchai, W. and Le, P. M. L. (2020). Deep eutectic solvent based on lithium bis
[(tri fluoromethyl) sulfonyl] imide (LiTFSI) and 2,2,2- trifluoroacetamide
(TFA) as a promising electrolyte for a high voltage lithium-ion battery with a
LiMn2O4 cathode. ACS Omega, 5(37):
23843-23853.