Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 936 - 943

 

STRUCTURAL AND CONDUCTIVITY STUDIES OF CHOLINE CHLORIDE-BASED DEEP EUTECTIC SOLVENT AS A POTENTIAL ELECTROLYTE IN LITHIUM-ION BATTERIES

 

(Kajian Struktur dan Kekonduksian Pelarut Eutektik Dalam Berasaskan Kolina Klorida yang Berpotensi sebagai Elektrolit dalam Bateri Ion Litium)

 

Intan Qhuzairin Zaharuddin, Nabilah Akemal Muhd Zailani*, Khuzaimah Nazir, Rizana Yusof,

Mohd Azlan Mohd Ishak

 

Fakulti Sains Gunaan,

Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, 02600 Arau, Perlis, Malaysia

 

*Corresponding author: nabilahakemal@uitm.edu.my

 

 

Received: 14 February 2022; Accepted: 18 August 2022 ; Published:  30 October 2022

 

 

Abstract

Utilizing volatile and flammable electrolytes in lithium-ion batteries has become a primary concern worldwide. Consequently, a safer high-performance electrolytes approach is required to solve the issue. In this circumstance, deep eutectic solvent (DES) might be the best option to substitute the harmful conventional liquid electrolytes. The present study explores the potential of ternary DES, which comprises choline chloride (ChCl), 1,4-butanediol (1,4-BD), and lithium triflate (LiTf), as an electrolyte in lithium-ion batteries. The structural and conductivity of ChCl/1,4-BD at 1:1, 1:2; and 1:3 mole ratios and ChCl/1,4-BD/LiTf at 2.5, 5, and 10 wt.% LiTf systems were investigated. The ChCl/1,4-BD at 1:1 ratio (DES1:1) recorded the highest ionic conductivity of 2.41 mS cm−1, which resulted from the least amount of hydrogen bonds between ChCl and 1,4-BD. Subsequently, the DES1:1 was doped with different percentages of LiTf. The highest ionic conductivity, 2.56 mS cm−1, was obtained from the ChCl/1,4-BD/2.5 wt.% LiTf system. The elevated ionic conductivity was attributable to the high amount of mobile lithium ions available due to fewer hydrogen bonds formed between the ChCl/1,4-BD and LiTf. Conclusively, the highly conducting ChCl/1,4-BD/2.5 wt.% LiTf demonstrated the best potential for application in lithium-ion batteries.

 

Keywords: deep eutectic solvents, liquid electrolytes, lithium salts, ionic conductivity

 

Abstrak

Penggunaan elektrolit yang mudah meruap dan terbakar dalam bateri ion litium merupakan isu utama di seluruh dunia. Oleh itu, elektrolit yang berprestasi tinggi dengan pendekatan yang lebih selamat diperlukan bagi menyelesaikan isu ini. Dalam keadaan ini, pelarut eutektik dalam (DES) dilihat sebagai alternatif terbaik untuk menggantikan cecair elektrolit konvensional yang berbahaya. Kajian ini meneroka potensi DES ternari yang terdiri daripada kolina klorida (ChCl), 1,4-butanadiol (1,4-BD) dan litium triflat (LiTf) sebagai elektrolit hijau dalam bateri ion litium. Struktur dan kekonduksian bagi sistem dengan 1:1, 1:2; dan 1:3 nisbah mol ChCl/1,4-BD dan ChCl/1,4-BD/LiTf dengan 2.5, 5, 10 wt.% LiTf telah dikaji. Sistem ChCl/1,4-BD dengan 1:1 nisbah mol (DES1:1) telah menunjukkan kekonduksian ionik paling tinggi, iaitu 2.41 mS cm−1, yang terhasil daripada interaksi ikatan hidrogen yang rendah antara ChCl dengan 1,4-BD. Seterusnya, DES1:1 telah ditambah dengan LiTf pada peratusan yang berbeza. Kekonduksian ionik yang tertinggi, iaitu 2.56 mS cm−1, telah diperoleh sistem ChCl/1,4-BD/2.5 wt.% LiTf. Kekonduksian yang tinggi ini disumbangkan oleh kehadiran ion litium bebas yang tinggi hasil daripada kurang interaksi ikatan hidrogen antara ChCl/1,4-BD dengan LiTf. Kesimpulannya, ChCl/1,4-BD/2.5 wt.% LiTf dengan kekonduksian yang tinggi menunjukkan potensi terbaik untuk digunakan dalam bateri ion litium.

 

Kata kunci: pelarut eutektik dalam, cecair elektrolit, garam litium, kekonduksian ionik


 

References

1.         Chen, T., Jin, Y., Lv, H., Yang, A., Liu, M., Chen, B., Xie, Y. and Chen, Q. (2020). Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University, 26(3): 208-217.

2.         Liu, K., Liu, Y., Lin, D., Pei, A. and Cui, Y. (2018). Materials for lithium-ion battery safety. Science Advances, 4(6): eaas9820.

3.         Zubi, G., Dufo-López, R., Carvalho, M. and Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews: 89: 292-308.

4.         Dhingra, D., Bhawna and Pandey, S. (2018). Effect of lithium chloride on the density and dynamic viscosity of choline chloride / urea deep eutectic solvent in the temperature range (303.15-358.15)K. The Journal of Chemical Thermodynamics, 130: 166-172.

5.         Zhang, Q., Vigier, K. D. O., Royer, S. and Jerome, F. (2012). Deep eutectic solvents: syntheses, properties and applications. The Royal Society of Chemistry, 41(21): 7108-7146.

6.         Yusof, R., Abdulmalek, E., Sirat, K. and Rahman, M. B. A. (2014). Tetrabutylammonium bromide (TBABr)-Based deep eutectic solvents (DESs) and their physical properties. Molecules, 19(6): 8011-8026.

7.         Millia, L., Dall’Asta, V., Ferrara, C., Berbenni, V., Quartarone, E., Perna, F. M., Capriati, V. and Mustarelli, P. (2018). Bio-inspired choline chloride-based deep eutectic solvents as electrolytes in for lithium-ion batteries. Solid State Ionics, 323: 44-48.

8.         Tomé, L. I. N., Baião, V., Silva, W. and Brett, C. M. A. (2018). Deep eutectic solvents for the production and application of new materials. Applied Materials Today, 10: 30-50.

9.         Boisset, A., Menne, S., Jacquemin, J., Balducci, A. and Anouti, M. (2013). Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 15(46): 20054-20063.

10.      Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G. and Wu, B. (2019). Lithium-ion battery fast charging: A review. e-Transportation, 1: 100011.

11.      Wang, Q., Jiang, L., Yu, Y. and Sun, J. (2019). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55: 93-114.

12.      Shafie, M., Yusof, R. and Gan, C. (2019). Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties. Journal of Molecular Liquids, 288: 111081.

13.      Jesus, A. J. L., Rosado, M. T. S., Reva, I., Fausto, R., Eusébio, M. E. S. and Redinha, J. S. (2008). Structure of Isolated 1 , 4-Butanediol : Combination of MP2 calculations, NBO analysis, and matrix-isolation infrared spectroscopy. The Journal of Physical Chemistry A, 112(20): 4669-4678.

14.      Wang, H., Liu, S., Zhao, Y., Wang, J. and Yu, Z.     (2019). Insights into the hydrogen bond interactions in deep eutectic solvents composed of choline chloride and polyols. ACS Sustainable Chemistry & Engineering, 7: 7760-7767.

15.      Zhong, M., Fang, Q., Wu, Y., Ying, X. and Jie, Z.  (2020). An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 452: 227847.

16.      Dinh, T. T. A., Huynh, T. T. K., Le, L. T. M., Truong, T. T. T., Nguyen, O. H., Tran, K. T. T., Tran, M. V, Tran, P. H., Kaveevivitchai, W. and Le, P. M. L. (2020). Deep eutectic solvent based on lithium bis [(tri fluoromethyl) sulfonyl] imide (LiTFSI) and 2,2,2- trifluoroacetamide (TFA) as a promising electrolyte for a high voltage lithium-ion battery with a LiMn2O4 cathode. ACS Omega, 5(37): 23843-23853.