Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1123 - 1134

 

CHARACTERIZATION AND TENSILE PROPERTIES OF POLYLACTIC ACID BIOCOMPOSITE FILLED MICROCRYSTALLINE CELLULOSE EXTRACTED FROM KENAF  

 

(Ciri-Ciri Dan Sifat Tensil Poli(Asid Laktik) Biokomposit yang Diisi Selulosa Mikrohablur yang Diekstrak daripada Kenaf)

 

Norhazirah Azhar 1, Adzrie Baharudin2, Zuliahani Ahmad2,3 *, Rozyanty Rahman3,4, Luqman Musa3,4 ,

Siti Nor Din2, Nor Mazlina Abdul Wahab2

 

1Malaysian Nuclear Agency, Bangi, 43000 Kajang Selangor

2Department of Polymer Technology,

Faculty of Applied Sciences

Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

3Advanced Polymer Group,

Center of Excellence Geopolymer & Department of Polymer Technology (CEGeoGTech),

Universiti Malaysia Perlis, 02600 Perlis, Malaysia

4 Faculty of Chemical Engineering & Technology,

Universiti Malaysia Perlis, Kompleks Pusat Pengajian Taman Muhibah, 02600 Perlis, Malaysia

 

*Corresponding author: zuliahani@uitm.edu.my

 

 

Received: 17 November 2021; Accepted: 24 March 2022; Published:  30 October2022

 

 

Abstract

Microcrystalline cellulose (MCC) was successfully extracted from kenaf bast fiber plant (Hibiscus cannabinus L.) and incorporated into PLA biocomposite. The kenaf bast fiber undergone alkali treatment and bleaching prior to acid hydrolysis using 1M HNO3 in obtaining MCC. Several characterizations on isolated MCC and PLA/MCC biocomposite conducted such as Fourier-transform infrared (FT-IR) spectroscopy and crystallinity index. Further characterization was made on the PLA/MCC biocomposite to study its mechanical and physical properties. FT-IR spectral indicated the successive elimination of non-cellulosic constituents in MCC. Differential scanning calorimetry (DSC) analysis revealed the percentage of crystalline region in the MCC obtained from kenaf bast fiber is higher at 88.53, making it suitable to be used as reinforcement filler in PLA biocomposite. Whilst tensile testing on various loading of PLA/MCC composites showed increment in tensile strength and elastic modulus but decrement in percent elongation. The optimum parameters were found at 9% MCC loading at 18.7 MPa in tensile strength attributed to well mixing of PLA and MCC and 88.53 crystallinity index. The potential application of PLA/MCC biocomposite to be used as food packaging.

 

Keywords: biocomposite, kenaf, microcrystalline cellulose, polylactic acid

 

Abstrak

Selulosa mikrohablur (MCC) berjaya diekstrak daripada tumbuhan gentian kulit kenaf (Hibiscus cannabinus L.) dan dimasukkan ke dalam biokomposit PLA. Gentian kulit kenaf menjalani rawatan alkali dan pelunturan sebelum dihidrolisis asid menggunakan 1M HNO3 dalam mendapatkan MCC. Beberapa pencirian pada biokomposit MCC dan PLA/MCC terpencil dijalankan seperti Fourier-transform infrared (FT-IR) dan indeks kehabluran. Pencirian lanjut dibuat pada biokomposit PLA/MCC untuk mengkaji sifat mekanikal dan fizikalnya. Spektrum FT-IR menunjukkan penghapusan berturut-turut juzuk bukan selulosa dalam MCC. Analisis kalorimetri pengimbasan pembezaan (DSC) menunjukkan peratusan kawasan kristal dalam MCC yang diperoleh daripada gentian kulit kenaf adalah lebih tinggi iaitu 88.53, menjadikannya sesuai digunakan sebagai pengisi tetulang dalam biokomposit PLA. Manakala ujian tegangan ke atas pelbagai pemuatan komposit PLA/MCC menunjukkan peningkatan dalam kekuatan tegangan dan modulus keanjalan tetapi penyusutan dalam peratus pemanjangan. Parameter optimum didapati pada 9% pemuatan MCC pada 18.7 MPa dalam kekuatan tegangan yang dikaitkan dengan pencampuran telaga PLA dan MCC dan indeks sistaliniti 88.53. Potensi penggunaan biokomposit PLA adalah untuk digunakan dalam pembungkusan makanan.

 

Kata kunci: biokomposit, kenaf, selulosa mikrohablur, poli(asid laktik)

 

References

1.         Bhasney, S. M., Kumar, A. and Katiyar, V. (2020). Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering, 184: 107717.

2.         Bhasney, S. M., Bhagabati, P., Kumar, A. and Katiyar, V. (2019). Morphology and crystalline characteristics of polylactic acid [PLA]/linear low-density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Composites Science and Technology, 171: 54-61.

3.         Zuliahani, A., Nurul Nadhirah, R., Rozyanty, A. R., Nawawi, W. I. and Nor Hanani, A. B. (2016). Crystallinity, tapping and bulk density of microcrystalline cellulose (MCC) isolated from rice husk (RH). In Applied Mechanics and Materials, 835: 272-276.

4.         Sadalage, P. S. and Pawar, K. D. (2021). Production of microcrystalline cellulose and bacterial nanocellulose through biological valorization of lignocellulosic biomass wastes. Journal of Cleaner Production, 327: 129462.

5.         Nampoothiri, K. M., Nair, N. R. and John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource technology, 101(22): 8493-8501.

6.         Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A. and Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2): 676-687.

7.         Ahmad, Z., Roziaizan, N. N., Rahman, R., Mohamad, A. F. and Ismail, W. I. N. W. (2016). Isolation and characterization of microcrystalline cellulose (MCC) from rice husk (RH). In MATEC Web of Conferences, 47: p. 05013.

8.         Khalil, H. A., Yusra, A. I., Bhat, A. H. and Jawaid, M. (2010). Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Industrial Crops and Products, 31(1): 113-121.

9.         Haafiz, M. M., Eichhorn, S. J., Hassan, A. and Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate polymers, 93(2): 628-634.

10.      Radzi, M. K. F. M., Muhamad, N., Akhtar, M. N., Razak, Z. and Foudzi, F. M. (2018). The effect of kenaf filler reinforcement on the mechanical and physical properties of injection moulded polypropylene composites. Sains Malaysiana, 47(2): 367-376.

11.      Sun, X., Lu, C., Liu, Y., Zhang, W. and Zhang, X. (2014). Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydrate Polymers, 101: 642-649.

12.      Rosa, S. M., Rehman, N., de Miranda, M. I. G., Nachtigall, S. M. and Bica, C. I. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2): 1131-1138.

13.      Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S. and Leejarkpai, T. (2015). Biodegradable plastics prepared from poly (lactic acid), poly (butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. Journal of Polymers and the Environment, 23(1): 114-125.

14.      Ibrahim, M. M., El-Zawawy, W. K., Jüttke, Y., Koschella, A. and Heinze, T. (2013). Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose, 20(5): 2403-2416.

15.      Aimi, M. N., Anuar, H., Maizirwan, M., Sapuan, S. M., Wahit, M. U. and Zakaria, S. (2015). Preparation of durian skin nanofibre (DSNF) and its effect on the properties of polylactic acid (PLA) biocompositesSains Malaysiana, 44(11): 1551-1559.

16.      Mukherjee, T., Sani, M., Kao, N., Gupta, R. K., Quazi, N. and Bhattacharya, S. (2013). Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chemical Engineering Science, 101: 655-662.

17.      Yussuf, A. A., Massoumi, I. and Hassan, A. (2010). Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties. Journal of Polymers and the Environment, 18(3): 422-429.

18.      Rocca-Smith, J. R., Whyte, O., Brachais, C. H., Champion, D., Piasente, F., Marcuzzo, E., ... & Karbowiak, T. (2017). Beyond biodegradability of poly (lactic acid): physical and chemical stability in humid environments. ACS Sustainable Chemistry & Engineering5(3): 2751-2762.

19.      Wan, L., Zhou, S. and Zhang, Y. (2019). Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid. International Journal of Biological Macromolecules, 125: 1093-1102.