Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1112 - 1122

 

POLYMER-FREE TRANSFER OF GRAPHENE-BASED MATERIAL DERIVED FROM COOKING PALM OIL BY CHEMICAL VAPOUR DEPOSITION TECHNIQUE

 

(Pemindahan Bebas Polimer bagi Bahan Berasaskan Grafin yang Disintesis dari Minyak Masak Kelapa Sawit Menggunakan Teknik Pemendapan Wap Kimia)

 

Azzafeerah Mahyuddin1,2*, Abd. Khamim Ismail1, Muhammad Firdaus Omar1, Ainul Hakimah Karim3

 

1Department of Physics,

Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor, Malaysia

2Department of Quality Engineering,

Universiti Kuala Lumpur, Malaysian Institute of Industrial Technology,

Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750 Johor, Malaysia.

3Department of Instrumentation and Control Engineering,

Universiti Kuala Lumpur, Malaysian Institute of Industrial Technology,

Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750 Johor, Malaysia.

 

*Corresponding author: azzafeerah@unikl.edu.my

 

 

Received: 17 December 2021; Accepted: 10 March 2022; Published:  30 October 2022

 

 

Abstract

Chemical vapour deposition (CVD) of cooking palm oil precursors with a nickel (Ni) catalyst is an established method to produce graphene-based materials. Nonetheless, transferring the graphene sheets from the substrate surface to a selected target substrate presents a major challenge. The utilisation of well-known poly (methyl methacrylate) (PMMA)-assisted graphene transfer promotes defects, impurities, folds, and wrinkles in the graphene sheets, thus affecting its properties. Consequently, the present study demonstrated a polymer-free graphene sheets transfer technique on a Ni substrate derived from cooking palm oil. A dropwise hexane layer substituted the PMMA supporting layer during the etching process to remove the Ni substrate. The quality of the graphene sheet was investigated with optical microscopy by employing a Leica DM1750 M microscope, scanning electron microscopy (SEM) with a Hitachi S-3400N, and Raman spectroscopy utilising a UniDRON automated microscope Raman mapping system with 514 nm laser excitation. Resultantly, macroscopically clean and crack-free graphene sheets were was obtained. Furthermore, the technique was less complicated than the PMMA-assisted transfer technique. The Raman spectra of the polymer-free method also revealed visible graphene peaks, which was absent in the PMMA-transferred samples.

 

Keywords: graphene, chemical vapour deposition, polymer-free transfer

 

Abstrak

Kaedah pemendapan wap kimia (CVD) yang menggunakan minyak masak kelapa sawit sebagai prekursor serta nikel sebagai pemangkin dalam proses sintesis bahan berasaskan grafin merupakan teknik yang telah lama dikenali. Namun, cabaran utama dalam menggunakan teknik CVD ini ialah proses pemindahan helaian grafin dari permukaan substrat asal ke substrat baru. Salah satu kaedah pemindahan yang sering digunakan ialah kaedah pemindahan poli (metil-metakrilat) (PMMA) iaitu sejenis polimer yang akan menyebabkan helaian grafin mengalami kerosakan seperti kotor, berlipat dan berkedut. Oleh yang demikian, kajian ini akan menampilkan suatu teknik pemindahan grafin yang bebas polimer, disintesis di atas substrat nikel menggunakan minyak masak kelapa sawit. Lapisan heksana digunakan sebagai pengganti lapisan PMMA semasa proses penghakisan substrat nikel. Kualiti helaian grafin daripada hasil proses pemindahan ini dikaji menggunakan mikroskop optik (Leica DM1750 M), mikroskop pengimbasan elektron (SEM) dari Hitachi S-3400N dan spektroskopi Raman (system pemetaan mikroskop automatik Raman UniDRON dengan pengujaan laser 514 nm). Dapatan menunjukkan bahawa kaedah ini dapat menghasilkan helaian grafin yang bersih, tidak koyak serta pemprosesan yang tidak rumit berbanding teknik PMMA. Kaedah bebas polimer ini juga dapat menerbitkan puncak grafen menggunakan spektroskopi Raman berbanding kaedah pemindahan PMMA.

 

Kata kunci: grafin, kaedah pemendapan wap kimia, pemindahan bebas polimer

 

References

1.      Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... and Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696): 666-669.

2.      Avouris, P. (2010). Graphene: Electronic and photonic properties and devices. Nano Letters, 10(11): 4285-4294

3.      Lee, C., Wei, X., Kysar, J.W., and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887): 385-388.

4.      Paulus, G. L. C., Wang, Q. H. and Strano, M. S. (2013). Covalent electron transfer chemistry of graphene with diazonium salts. Accounts of Chemical Research, 46(1): 160-170.

5.      Muñoz, R. and Gómez-Aleixandre, C. (2013). Review of CVD synthesis of graphene. Chemical Vapor Deposition, 19: 297-322

6.      Yan, Z., Peng, Z. and Tour, J. M. (2014). Chemical vapor deposition of graphene single crystals. Accounts of Chemical Research, 47(4): 1327-1337

7.      Kwon, S.-J., Seo, H.-K., Ahn, S. and Lee, T.-W. (2019). Value-added recycling of inexpensive carbon sources to graphene and carbon nanotubes. Advanced Sustainable Systems, 3(1): 1800016.

8.      Aryal, H. R., Adhikari, S., Uchida, H., Wakita, K. and Umeno, M. (2016). Few layers isolated graphene domains grown on copper foils by microwave surface wave plasma CVD using camphor as a precursor. 2D Materials, 3(1): 011009.

9.      Rahbar Shamskar, K., Rashidi, A., Aberoomand Azar, P., Yousefi, M. and Baniyaghoob, S. (2019). Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption. Environmental Science and Pollution Research, 26(4): 3643-3650.

10.    Ruan, G., Sun, Z., Peng, Z., and Tour, J. M. (2011). Growth of graphene from food, insects, and waste. ACS Nano, 5 (9): 7601-7607

11.    Wang, Z., Yu, J., Zhang, X., Li, N., Liu, B., Li, Y., ... and Sun, L. (2016). Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS Applied Materials & Interfaces, 8(2): 1434-1439.

12.    Rahman, S. F. A., Mahmood, M. R. and Hashim, A. M. (2014). Growth of graphene on nickel using a natural carbon source by thermal chemical vapor deposition. Sains Malaysiana, 43(8): 1205-1211.

13.    Salifairus, M. J., Abd Hamid, S. B., Soga, T., Alrokayan, S. A., Khan, H. A. and Rusop, M. (2016). Structural and optical properties of graphene from green carbon source via thermal chemical vapor deposition. Journal of Materials Research, 31(13): 1947-1956.

14.    Maarof, S., Ali, A. A. and Hashim, A. M. (2019). Synthesis of large-area single-layer graphene using refined cooking palm oil on copper substrate by spray injector-assisted CVD. Nanoscale Research Letters, 14(1): 143.

15.    Chen, Y., Gong, X. and Gai, J. (2016). Progress and challenges in transfer of large-area graphene films. Advanced Science, 3(8): 1500343

16.    Ng, J., Jones, T., Martinez-Velis, I., Wang, A., Hopkins, J. and Xie, Y. H. (2020). Effects of polymer residue on the pull-in of suspended graphene. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 38(2): 023001.

17.    Stehle, Y. Y., Voylov, D., Vlassiouk, I. V., Lassiter, M. G., Park, J., Sharma, J. K. ... and Polizos, G. (2017). Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures. Nanotechnology, 28(28): 285601.

18.    Belyaeva, L. A., Fu, W., Arjmandi-Tash, H. and Schneider, G. F. (2016). Molecular caging of graphene with cyclohexane: transfer and electrical transport. ACS Central Science, 2 (12): 904-909.

19.    Zhang, G., Güell, A. G., Kirkman, P. M., Lazenby, R. A., Miller, T. S. and Unwin, P. R. (2016). Versatile polymer-free graphene transfer method and applications. ACS Applied Materials & Interfaces, 8(12): 8008-8016.

20.    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... and Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9(12): 4359-4363.

21.    Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y., Ahmed, S., An, J., ... and Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano5(9): 6916-6924.

22.    Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... and Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8): 4806-4814.

23.    Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A. and Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1): 36-41.

24.    Shah, J., Lopez-Mercado, J., Carreon, M. G., Lopez-Miranda, A. and Carreon, M. L. (2018). Plasma synthesis of graphene from mango peel. ACS Omega, 3(1): 455-463.

25.    Seo, D. H., Pineda, S., Fang, J., Gozukara, Y., Yick, S., Bendavid, A., ... and Ostrikov, K. K. (2017). Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 8(1): 1-9.

26.    Zhang, Y., Gomez, L., Ishikawa, F. N., Madaria, A., Ryu, K., Wang, C., ... and Zhou, C. (2010). Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. The Journal of Physical Chemistry Letters, 1(20): 3101-3107.

27.    Khalid, A., Mohamed, M. A., and Umar, A. A. (2017). Graphene growth at low temperatures using RF-plasma enhanced chemical vapour deposition. Sains Malaysiana, 46 (7): 1111-1117.