Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1112 - 1122
POLYMER-FREE TRANSFER OF
GRAPHENE-BASED MATERIAL DERIVED FROM COOKING PALM OIL BY CHEMICAL VAPOUR
DEPOSITION TECHNIQUE
(Pemindahan
Bebas Polimer bagi Bahan Berasaskan
Grafin yang Disintesis dari Minyak Masak
Kelapa Sawit Menggunakan Teknik Pemendapan Wap Kimia)
Azzafeerah Mahyuddin1,2*, Abd. Khamim
Ismail1, Muhammad Firdaus Omar1, Ainul
Hakimah Karim3
1Department
of Physics,
Faculty
of Science, Universiti Teknologi
Malaysia, 81310 Johor, Malaysia
2Department
of Quality Engineering,
Universiti Kuala Lumpur, Malaysian
Institute of Industrial Technology,
Persiaran
Sinaran Ilmu, Bandar Seri Alam, 81750 Johor, Malaysia.
3Department
of Instrumentation and Control Engineering,
Universiti Kuala Lumpur, Malaysian
Institute of Industrial Technology,
Persiaran
Sinaran Ilmu, Bandar Seri Alam, 81750 Johor, Malaysia.
*Corresponding
author: azzafeerah@unikl.edu.my
Received: 17 December 2021; Accepted:
10 March 2022; Published: 30 October
2022
Abstract
Chemical vapour deposition (CVD) of cooking palm oil
precursors with a nickel (Ni) catalyst is an established method to produce
graphene-based materials. Nonetheless, transferring the graphene sheets from
the substrate surface to a selected target substrate presents a major
challenge. The utilisation of well-known poly (methyl methacrylate)
(PMMA)-assisted graphene transfer promotes defects, impurities, folds, and
wrinkles in the graphene sheets, thus affecting its properties. Consequently,
the present study demonstrated a polymer-free graphene sheets transfer
technique on a Ni substrate derived from cooking palm oil. A dropwise hexane
layer substituted the PMMA supporting layer during the etching process to
remove the Ni substrate. The quality of the graphene sheet was investigated
with optical microscopy by employing a Leica DM1750 M microscope, scanning
electron microscopy (SEM) with a Hitachi S-3400N, and Raman spectroscopy
utilising a UniDRON automated microscope Raman
mapping system with 514 nm laser excitation. Resultantly, macroscopically clean
and crack-free graphene sheets were was obtained. Furthermore, the technique
was less complicated than the PMMA-assisted transfer technique. The Raman
spectra of the polymer-free method also revealed visible graphene peaks, which
was absent in the PMMA-transferred samples.
Keywords: graphene, chemical vapour
deposition, polymer-free transfer
Abstrak
Kaedah pemendapan
wap kimia (CVD) yang menggunakan minyak masak kelapa sawit
sebagai prekursor serta nikel sebagai
pemangkin dalam proses sintesis bahan berasaskan grafin merupakan teknik yang telah lama dikenali. Namun, cabaran utama dalam menggunakan
teknik CVD ini ialah proses pemindahan helaian grafin dari permukaan substrat asal ke
substrat baru. Salah satu kaedah pemindahan
yang sering digunakan ialah kaedah pemindahan
poli (metil-metakrilat) (PMMA) iaitu
sejenis polimer yang akan menyebabkan helaian grafin mengalami kerosakan seperti kotor, berlipat dan berkedut. Oleh yang demikian, kajian ini akan menampilkan
suatu teknik pemindahan grafin yang bebas polimer, disintesis di atas substrat nikel menggunakan minyak masak kelapa sawit.
Lapisan heksana digunakan sebagai pengganti lapisan PMMA semasa proses penghakisan substrat nikel. Kualiti helaian grafin daripada hasil proses pemindahan ini dikaji menggunakan
mikroskop optik (Leica
DM1750 M), mikroskop pengimbasan
elektron (SEM) dari Hitachi
S-3400N dan spektroskopi Raman (system pemetaan mikroskop automatik Raman UniDRON dengan pengujaan laser 514 nm). Dapatan menunjukkan bahawa kaedah ini
dapat menghasilkan helaian grafin yang bersih, tidak koyak
serta pemprosesan yang tidak rumit berbanding
teknik PMMA. Kaedah bebas polimer ini
juga dapat menerbitkan puncak grafen menggunakan
spektroskopi Raman berbanding
kaedah pemindahan PMMA.
Kata kunci:
grafin, kaedah pemendapan wap kimia, pemindahan bebas polimer
References
1. Novoselov, K. S., Geim, A. K., Morozov, S.
V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... and Firsov, A. A. (2004).
Electric field effect in atomically thin carbon films. Science,
306(5696): 666-669.
2. Avouris, P. (2010). Graphene: Electronic
and photonic properties and devices. Nano Letters, 10(11): 4285-4294
3. Lee, C., Wei, X., Kysar, J.W., and Hone, J.
(2008). Measurement of the elastic properties and intrinsic strength of
monolayer graphene. Science, 321(5887): 385-388.
4. Paulus, G. L. C., Wang, Q. H. and Strano,
M. S. (2013). Covalent electron transfer chemistry of graphene with diazonium
salts. Accounts of Chemical Research, 46(1): 160-170.
5. Muñoz, R. and Gómez-Aleixandre, C.
(2013). Review of CVD synthesis of graphene. Chemical Vapor
Deposition, 19: 297-322
6. Yan, Z., Peng, Z. and Tour, J. M. (2014).
Chemical vapor deposition of graphene single crystals. Accounts of Chemical
Research, 47(4): 1327-1337
7. Kwon, S.-J., Seo, H.-K., Ahn, S. and Lee,
T.-W. (2019). Value-added recycling of inexpensive carbon sources to graphene
and carbon nanotubes. Advanced Sustainable Systems, 3(1): 1800016.
8. Aryal, H. R., Adhikari, S., Uchida, H., Wakita, K.
and Umeno, M. (2016). Few layers isolated graphene domains grown on copper
foils by microwave surface wave plasma CVD using camphor as a precursor. 2D
Materials, 3(1): 011009.
9. Rahbar Shamskar, K., Rashidi, A., Aberoomand Azar,
P., Yousefi, M. and Baniyaghoob, S. (2019). Synthesis of graphene by in situ
catalytic chemical vapor deposition of reed as a carbon source for VOC
adsorption. Environmental Science and Pollution Research, 26(4):
3643-3650.
10. Ruan, G., Sun, Z., Peng, Z., and Tour, J. M.
(2011). Growth of graphene from food, insects, and waste. ACS Nano, 5 (9):
7601-7607
11. Wang, Z., Yu, J., Zhang, X., Li, N., Liu, B., Li,
Y., ... and Sun, L. (2016). Large-scale and controllable synthesis of graphene
quantum dots from rice husk biomass: a comprehensive utilization strategy. ACS
Applied Materials & Interfaces, 8(2): 1434-1439.
12. Rahman, S. F. A., Mahmood, M. R. and Hashim,
A. M. (2014). Growth of graphene on nickel using a natural carbon source by
thermal chemical vapor deposition. Sains Malaysiana, 43(8): 1205-1211.
13. Salifairus, M. J., Abd Hamid, S. B., Soga, T., Alrokayan, S. A., Khan,
H. A. and Rusop, M. (2016). Structural and optical properties of graphene from
green carbon source via thermal chemical vapor deposition. Journal of
Materials Research, 31(13): 1947-1956.
14. Maarof, S., Ali, A. A. and Hashim, A. M.
(2019). Synthesis of large-area single-layer graphene using refined cooking
palm oil on copper substrate by spray injector-assisted CVD. Nanoscale
Research Letters, 14(1): 143.
15. Chen, Y., Gong, X. and Gai, J. (2016).
Progress and challenges in transfer of large-area graphene
films. Advanced Science, 3(8): 1500343
16. Ng, J., Jones, T., Martinez-Velis, I., Wang, A.,
Hopkins, J. and Xie, Y. H. (2020). Effects of polymer residue on the pull-in of
suspended graphene. Journal of Vacuum Science & Technology B,
Nanotechnology and Microelectronics: Materials, Processing, Measurement, and
Phenomena, 38(2): 023001.
17. Stehle, Y. Y., Voylov, D., Vlassiouk, I. V.,
Lassiter, M. G., Park, J., Sharma, J. K. ... and Polizos, G. (2017). Effect of
polymer residues on the electrical properties of large-area graphene–hexagonal
boron nitride planar heterostructures. Nanotechnology, 28(28):
285601.
18. Belyaeva, L. A., Fu, W., Arjmandi-Tash, H.
and Schneider, G. F. (2016). Molecular caging of graphene with cyclohexane:
transfer and electrical transport. ACS Central Science, 2 (12): 904-909.
19. Zhang, G., Güell, A. G., Kirkman, P. M.,
Lazenby, R. A., Miller, T. S. and Unwin, P. R. (2016). Versatile polymer-free
graphene transfer method and applications. ACS Applied Materials &
Interfaces, 8(12): 8008-8016.
20. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B.,
Chen, D., ... and Ruoff, R. S. (2009). Transfer of large-area graphene films
for high-performance transparent conductive electrodes. Nano Letters, 9(12):
4359-4363.
21. Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y.,
Ahmed, S., An, J., ... and Ruoff, R. S. (2011). Transfer of CVD-grown monolayer
graphene onto arbitrary substrates. ACS Nano, 5(9):
6916-6924.
22. Marcano, D. C., Kosynkin, D. V., Berlin, J. M.,
Sinitskii, A., Sun, Z., Slesarev, A., ... and Tour, J. M. (2010). Improved synthesis of
graphene oxide. ACS Nano, 4(8): 4806-4814.
23. Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K.,
Aksay, I. A. and Car, R. (2008). Raman spectra of graphite oxide and
functionalized graphene sheets. Nano Letters, 8(1): 36-41.
24. Shah, J., Lopez-Mercado, J., Carreon, M. G.,
Lopez-Miranda, A. and Carreon, M. L. (2018). Plasma synthesis of graphene from
mango peel. ACS Omega, 3(1): 455-463.
25. Seo, D. H., Pineda, S., Fang, J., Gozukara,
Y., Yick, S., Bendavid, A., ... and Ostrikov, K. K. (2017). Single-step
ambient-air synthesis of graphene from renewable precursors as electrochemical
genosensor. Nature Communications, 8(1): 1-9.
26. Zhang, Y., Gomez, L., Ishikawa, F. N., Madaria, A., Ryu, K., Wang, C.,
... and Zhou, C. (2010). Comparison of graphene growth on single-crystalline
and polycrystalline Ni by chemical vapor deposition. The Journal of
Physical Chemistry Letters, 1(20): 3101-3107.
27. Khalid, A., Mohamed, M. A., and
Umar, A. A. (2017). Graphene growth at low temperatures using RF-plasma
enhanced chemical vapour deposition. Sains Malaysiana, 46 (7):
1111-1117.