Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1135 - 1141
MORPHOLOGICAL
STUDIES OF SILICON CARBIDE THIN FILM DEPOSITED BY VERY HIGH FREQUENCY – PLASMA
ENHANCED CHEMICAL VAPOUR DEPOSITION THROUGH GAS DILUTION ADJUSTMENT
(Kajian Morfologi Filem Nipis Silikon Karbida Yang Dimendapkan
oleh Frekuensi Sangat Tinggi – Pemendapan Wap Kimia Dipertingkatkan Plasma
dengan Melaraskan Pencairan Gas)
Zainur Atika Ibrahim, Muhammad
Firdaus Omar*, Abd Khamim Ismail
Department of Physics, Faculty of Sciences,
Universiti Teknologi Malaysia, 81310 Skudai,
Johor Bahru, Malaysia
*Corresponding author:
firdausomar@utm.my
Received: 15 December 2021; Accepted:
27 March 2022; Published: 30 October
2022
Abstract
Dilution of gas was deployed to investigate the
surface morphology and the surface topography of Silicon Carbide (SiC) film
deposited using Very High Frequency – Plasma Enhanced Chemical Vapour
Deposition (VHF-PECVD) technique. The deposition process of SiC thin film was
performed with 150 MHz excitation frequency and 20 W radio frequency (RF)
power. The argon and hydrogen carrier gas dilution was set to 5 sccm. Silane
(SiH4) and methane (CH4) functioned as precursor gases
and their flow rates were fixed at 2 and 8 sccm, respectively. Direct
observations revealed that the surface morphology of deposited
nanostructured-silicon carbide (ns-SiC) films in all samples had layer-island
structure with varied island density and size formation above the critical
layer thickness. Next, surface topography and roughness of the deposited SiC films
were examined using Atomic Force Microscopy (AFM) in non-contact mode. As a
result, all samples displayed different roughness, surface topography
structure, and average grain diameter.
Keywords: silicon carbide, plasma
enhanced chemical vapour deposition, dilution gas
Abstrak
Pencairan gas digunakan untuk menyiasat morfologi permukaan
dan topografi permukaan filem silikon karbida (SiC) yang dimendap menggunakan
kaedah Frekuensi Sangat Tinggi – Pemendapan Wap Kimia Dipertingkatkan Plasma (VHF-PECVD).
VHF-PECVD dikendalikan menggunakan frekuensi pengujaan 150 MHz pada kuasa
gelombang radio (RF) 20 W. Sementara itu, pencairan gas pembawa argon dan
hidrogen ditetapkan kepada 5 sccm. Gas pendahulu silane (SiH4) dan
metana (CH4) masing-masing ditetapkan pada 2 dan 8 sccm. Pemerhatian
langsung mendedahkan bahawa morfologi filem nanostruktur-silikon karbida
(ns-SiC) yang dideposit dalam semua sampel mempamer sktruktur lapisan-pulau
dengan ketumpatan pulau yang berbeza dan pembentukan saiz di atas ketebalan
lapisan kritikal. Topografi permukaan dan kekasaran filem SiC yang dimendap
diperiksa dengan Mikroskopi Daya Atom (AFM) dalam mod bukan sentuhan. Hasil
kajian menunjukkan bahawa semua sampel mempunyai kekasaran struktur topografi
permukaan dan diameter butiran purata yang berbeza.
.
Kata kunci: silikon karbida, pemendapan wap
kimia dipertingkatkan plasma, gas pencairan
References
1.
Bandyopadhyay, A. K. (2008). Nano Materials. New Age International (P) Ltd, New Delhi.
2.
Tritt, T. M. and Subramanian, M. A. (2006).
Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS
Bulletin, 31(3): 188-198.
3.
Niu J. J. and Wang, J. N. (2007). An approach to
the synthesis of silicon carbide nanowires by simple thermal evaporation of
ferrocene onto silicon wafers. European
Journal of Inorganic Chemistry, 2007 (25): 4006-4010.
4.
Huczko, A., Bystrzejewski, M., Lange, H.,
Fabianowska, A., Cudziło, S., Panas, A. and Szala, M. (2005). Combustion
synthesis as a novel method for production of 1-D SiC nanostructures. The
Journal of Physical Chemistry B, 109(34): 16244-16251.
5.
Huczko, A., Lange, H., Bystrzejewski, M.,
Rűmmeli, M. H., Gemming, T., & Cudziło, S. (2005). Studies on
spontaneous formation of 1D nanocrystals of silicon carbide. Crystal
Research and Technology: Journal of Experimental and Industrial Crystallography, 40(4‐5):
334-339.
6.
Hamashita, D., Miyajima, S. and Konagai, M. (2012).
Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by
VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar
cells. Solar Energy Materials and Solar Cells, 107: 46-50.
7.
Zhou, W., Zhang, Y., Niu,
X., & Min, G. (2008). One-dimensional SiC nanostructures: Synthesis and
properties. In One-Dimensional Nanostructures (pp. 17-59).
Springer, New York, NY.
8.
Kamble, M. M., Waman, V. S., Mayabadi, A. H.,
Ghosh, S. S., Gabhale, B. B., Rondiya, S. R., ... and Jadkar, S. R. (2014).
Hydrogenated silicon carbide thin films prepared with high deposition rate by
hot wire chemical vapor deposition method. Journal of Coatings, 2014: 1-11.
9.
Pearton, S. J. and Ren, F. (2013). Wide bandgap
semiconductor one-dimensional nanostructures for applications in
nanoelectronics and nanosensors. Nanomaterials and Nanotechnology, 3: 1-15.
10.
Neudeck,
P. G. (2007). SiC technology. in The VLSI Handbook, 2nd ed. CRC Press,
Boca Raton, Florida: pp. 5.1-5.34.
11.
Harris
G. L. (1995). Properties of silicon carbide. INSPEC, The Institution of
Electrical Engineers, London, United Kingdom: pp. 3-9.
12.
Palmour, J. W., Edmond, J. A., Kong, H. S. and
Carter Jr, C. H. (1993). 6H-silicon carbide devices and applications. Physica
B: Condensed Matter, 185(1-4): 461-465.
13.
Sheng, S., Spencer, M. G., Tang, X., Zhou, P.,
Wongchotigul, K., Taylor, C. and Harris, G. L. (1997). An investigation of
3C-SiC photoconductive power switching devices. Materials Science and
Engineering: B, 46(1-3): 147-151.
14.
Saddow
S. and Agarwal A. (2004). Advances in silicon carbide processing and
applications. Artech House, Inc., Boston, London.
15.
Zorman, C. A. and Parro, R. J. (2008). Micro‐and
nanomechanical structures for silicon carbide MEMS and NEMS. Physica
Status Solidi (b), 245(7): 1404-1424.
16.
Willander, M., Friesel, M., Wahab, Q. U. and
Straumal, B. (2006). Silicon carbide and diamond for high temperature device
applications. Journal of Materials Science: Materials in Electronics, 17(1):
1-25.
17.
Avram, M., Avram, A., Bragaru, A., Chen, B.,
Poenar, D. P., & Iliescu, C. (2010, October). Low stress PECVD amorphous
silicon carbide for MEMS applications. In CAS 2010 Proceedings
(International Semiconductor Conference, 1: pp. 239-242.
18.
Künle, M., Hartel, A., Löper, P., Janz, S. and
Eibl, O. Nanostructure and phase formation in annealed a-Si1-xCx: H thin films
for advanced silicon solar cells. 21st
Workshop on Quantum Solar Energy Conversion (QUANTSOL): pp. 1-4.
19.
Hamidinezhad, H., Wahab, Y. and Othaman, Z. (2011).
Ultra-sharp pointed tip Si nanowires produced by very high frequency plasma
enhanced chemical vapor deposition via VLS mechanism. Journal of
Materials Science, 46(15), 5085-5089.
20.
Socrates
G. (2004). Infrared and raman characteristic group frequencies: Tables and
charts. 3rd edition. John
Wiley & Son Ltd.
21.
King, S. W., French, M., Bielefeld, J. and Lanford,
W. A. (2011). Fourier transform infrared spectroscopy investigation of chemical
bonding in low-k a-SiC: H thin films. Journal of Non-Crystalline Solids, 357(15),
2970-2983.
22.
Gates, S. M., Neumayer, D. A., Sherwood, M. H.,
Grill, A., Wang, X. and Sankarapandian, M. (2007). Preparation and structure of
porous dielectrics by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 101(9): 094103-1-094103-8.
23.
Gradmann, R., Loeper, P., Künle, M., Rothfelder,
M., Janz, S., Hermle, M and Glunz, S. (2011). Si and SiC nanocrystals in an
amorphous SiC matrix: Formation and electrical properties. Physica
Status Solidi C, 8(3): 831-834.
24.
Kim, Y. T., Yoon, S. G., Kim, H., Suh, S. J., Jang,
G. E., & Yoon, D. H. (2005). Crystallization of a-Si: h and a-SiC: h thin
films deposited by PECVD. Journal of Ceramic Processing & Research, 6(4):
294-297.
25.
Chen, E., Du, G., Zhang, Y., Qin, X., Lai, H. and
Shi, W. (2014). RF-PECVD deposition and optical properties of
hydrogenated amorphous silicon carbide thin films. Ceramics
International, 40(7): 9791-9797.
26.
Kuznetsov
V. L. and Butenko Y. V. (2006). Diamond phase transitions at nanoscale in ultrananocrystalline
diamond: Synthesis, properties and applications. William Andrew Publishing, New
York: pp. 405-475.
27.
Lin, Z., Guo, Y., Song, C., Song, J., Wang, X.,
Zhang, Y., ... and Huang, X. (2015). Influence of the oxygen content in
obtaining tunable and strong photoluminescence from low-temperature grown
silicon oxycarbide films. Journal of Alloys and Compounds, 633:
153-156.
28.
Peri, B., Borah, B. and Dash, R. K. (2015). Effect
of RF power and gas flow ratio on the growth and morphology of the PECVD SiC
thin film s for MEMS applications. Bulletin of Materials Science, 38(4):
1105-1112.
29.
El Khalfi, A. I., Ech-chamikh, E. M., Ijdiyaou, Y.,
Azizan, M., Essafti, A., Nkhaili, L. and Outzourhit, A. (2014). Infrared and
Raman study of amorphous silicon carbide thin films deposited by radiofrequency
cosputtering. Spectroscopy Letters, 47(5): 392-396.
30.
ElGazzar, H., Abdel-Rahman, E., Salem, H. G. and
Nassar, F. (2010). Preparation and characterizations of amorphous
nanostructured SiC thin films by low energy pulsed laser deposition. Applied
Surface Science, 256(7): 2056-2060.
31.
Bosi, M., Attolini, G., Negri, M., Frigeri, C.,
Buffagni, E., Ferrari, C., ... and Verucchi, R. (2013). Optimization of a buffer layer
for cubic silicon carbide growth on silicon substrates. Journal of
Crystal Growth, 383: 84-94.
32.
Radmilovic, V., Dahmen, U., Gao, D., Stoldt, C. R.,
Carraro, C. and Maboudian, R. (2007). Formation of< 111> fiber texture in
β-SiC films deposited on Si (100) substrates. Diamond and Related
Materials, 16(1): 74-80.
33.
Wu, X. L., Gu, Y., Xiong, S. J., Zhu, J. M., Huang,
G. S., Bao, X. M. and Siu, G. G. (2003). Self-organized growth and optical
emission of silicon-based nanoscale β-SiC quantum dots. Journal of
Applied Physics, 94(8): 5247-5251.