Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1135 - 1141

 

MORPHOLOGICAL STUDIES OF SILICON CARBIDE THIN FILM DEPOSITED BY VERY HIGH FREQUENCY – PLASMA ENHANCED CHEMICAL VAPOUR DEPOSITION THROUGH GAS DILUTION ADJUSTMENT

 

(Kajian Morfologi Filem Nipis Silikon Karbida Yang Dimendapkan oleh Frekuensi Sangat Tinggi – Pemendapan Wap Kimia Dipertingkatkan Plasma dengan Melaraskan Pencairan Gas)

 

Zainur Atika Ibrahim, Muhammad Firdaus Omar*, Abd Khamim Ismail

 

Department of Physics, Faculty of Sciences,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia

 

*Corresponding author: firdausomar@utm.my

 

 

Received: 15 December 2021; Accepted: 27 March 2022; Published:  30 October 2022

 

 

Abstract

Dilution of gas was deployed to investigate the surface morphology and the surface topography of Silicon Carbide (SiC) film deposited using Very High Frequency – Plasma Enhanced Chemical Vapour Deposition (VHF-PECVD) technique. The deposition process of SiC thin film was performed with 150 MHz excitation frequency and 20 W radio frequency (RF) power. The argon and hydrogen carrier gas dilution was set to 5 sccm. Silane (SiH4) and methane (CH4) functioned as precursor gases and their flow rates were fixed at 2 and 8 sccm, respectively. Direct observations revealed that the surface morphology of deposited nanostructured-silicon carbide (ns-SiC) films in all samples had layer-island structure with varied island density and size formation above the critical layer thickness. Next, surface topography and roughness of the deposited SiC films were examined using Atomic Force Microscopy (AFM) in non-contact mode. As a result, all samples displayed different roughness, surface topography structure, and average grain diameter.

 

Keywords: silicon carbide, plasma enhanced chemical vapour deposition, dilution gas

 

Abstrak

Pencairan gas digunakan untuk menyiasat morfologi permukaan dan topografi permukaan filem silikon karbida (SiC) yang dimendap menggunakan kaedah Frekuensi Sangat Tinggi – Pemendapan Wap Kimia Dipertingkatkan Plasma (VHF-PECVD). VHF-PECVD dikendalikan menggunakan frekuensi pengujaan 150 MHz pada kuasa gelombang radio (RF) 20 W. Sementara itu, pencairan gas pembawa argon dan hidrogen ditetapkan kepada 5 sccm. Gas pendahulu silane (SiH4) dan metana (CH4) masing-masing ditetapkan pada 2 dan 8 sccm. Pemerhatian langsung mendedahkan bahawa morfologi filem nanostruktur-silikon karbida (ns-SiC) yang dideposit dalam semua sampel mempamer sktruktur lapisan-pulau dengan ketumpatan pulau yang berbeza dan pembentukan saiz di atas ketebalan lapisan kritikal. Topografi permukaan dan kekasaran filem SiC yang dimendap diperiksa dengan Mikroskopi Daya Atom (AFM) dalam mod bukan sentuhan. Hasil kajian menunjukkan bahawa semua sampel mempunyai kekasaran struktur topografi permukaan dan diameter butiran purata yang berbeza.

.

Kata kunci: silikon karbida, pemendapan wap kimia dipertingkatkan plasma, gas pencairan



References

1.         Bandyopadhyay, A. K. (2008). Nano Materials. New Age International (P) Ltd, New Delhi.

2.         Tritt, T. M. and Subramanian, M. A. (2006). Thermoelectric materials, phenomena, and applications: a bird's eye view. MRS Bulletin, 31(3): 188-198.

3.         Niu J. J. and Wang, J. N. (2007). An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers. European Journal of Inorganic Chemistry, 2007 (25): 4006-4010.

4.         Huczko, A., Bystrzejewski, M., Lange, H., Fabianowska, A., Cudziło, S., Panas, A. and Szala, M. (2005). Combustion synthesis as a novel method for production of 1-D SiC nanostructures. The Journal of Physical Chemistry B, 109(34): 16244-16251.

5.         Huczko, A., Lange, H., Bystrzejewski, M., Rűmmeli, M. H., Gemming, T., & Cudziło, S. (2005). Studies on spontaneous formation of 1D nanocrystals of silicon carbide. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 40(4‐5): 334-339.

6.         Hamashita, D., Miyajima, S. and Konagai, M. (2012). Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 107: 46-50.

7.         Zhou, W., Zhang, Y., Niu, X., & Min, G. (2008). One-dimensional SiC nanostructures: Synthesis and properties. In One-Dimensional Nanostructures (pp. 17-59). Springer, New York, NY.

8.         Kamble, M. M., Waman, V. S., Mayabadi, A. H., Ghosh, S. S., Gabhale, B. B., Rondiya, S. R., ... and Jadkar, S. R. (2014). Hydrogenated silicon carbide thin films prepared with high deposition rate by hot wire chemical vapor deposition method. Journal of Coatings, 2014: 1-11.

9.         Pearton, S. J. and Ren, F. (2013). Wide bandgap semiconductor one-dimensional nanostructures for applications in nanoelectronics and nanosensors. Nanomaterials and Nanotechnology, 3: 1-15.

10.      Neudeck, P. G. (2007). SiC technology. in The VLSI Handbook, 2nd ed. CRC Press, Boca Raton, Florida: pp. 5.1-5.34.

11.      Harris G. L. (1995). Properties of silicon carbide. INSPEC, The Institution of Electrical Engineers, London, United Kingdom: pp. 3-9.

12.      Palmour, J. W., Edmond, J. A., Kong, H. S. and Carter Jr, C. H. (1993). 6H-silicon carbide devices and applications. Physica B: Condensed Matter, 185(1-4): 461-465.

13.      Sheng, S., Spencer, M. G., Tang, X., Zhou, P., Wongchotigul, K., Taylor, C. and Harris, G. L. (1997). An investigation of 3C-SiC photoconductive power switching devices. Materials Science and Engineering: B, 46(1-3): 147-151.

14.      Saddow S. and Agarwal A. (2004). Advances in silicon carbide processing and applications. Artech House, Inc., Boston, London.

15.      Zorman, C. A. and Parro, R. J. (2008). Micro‐and nanomechanical structures for silicon carbide MEMS and NEMS. Physica Status Solidi (b), 245(7): 1404-1424.

16.      Willander, M., Friesel, M., Wahab, Q. U. and Straumal, B. (2006). Silicon carbide and diamond for high temperature device applications. Journal of Materials Science: Materials in Electronics, 17(1): 1-25.

17.      Avram, M., Avram, A., Bragaru, A., Chen, B., Poenar, D. P., & Iliescu, C. (2010, October). Low stress PECVD amorphous silicon carbide for MEMS applications. In CAS 2010 Proceedings (International Semiconductor Conference, 1: pp. 239-242.

18.      Künle, M., Hartel, A., Löper, P., Janz, S. and Eibl, O. Nanostructure and phase formation in annealed a-Si1-xCx: H thin films for advanced silicon solar cells. 21st Workshop on Quantum Solar Energy Conversion (QUANTSOL): pp. 1-4.

19.      Hamidinezhad, H., Wahab, Y. and Othaman, Z. (2011). Ultra-sharp pointed tip Si nanowires produced by very high frequency plasma enhanced chemical vapor deposition via VLS mechanism. Journal of Materials Science, 46(15), 5085-5089.

20.      Socrates G. (2004). Infrared and raman characteristic group frequencies: Tables and charts. 3rd  edition. John Wiley & Son Ltd.

21.      King, S. W., French, M., Bielefeld, J. and Lanford, W. A. (2011). Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC: H thin films. Journal of Non-Crystalline Solids357(15), 2970-2983.

22.      Gates, S. M., Neumayer, D. A., Sherwood, M. H., Grill, A., Wang, X. and Sankarapandian, M. (2007). Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 101(9): 094103-1-094103-8.

23.      Gradmann, R., Loeper, P., Künle, M., Rothfelder, M., Janz, S., Hermle, M and Glunz, S. (2011). Si and SiC nanocrystals in an amorphous SiC matrix: Formation and electrical properties. Physica Status Solidi C, 8(3): 831-834.

24.      Kim, Y. T., Yoon, S. G., Kim, H., Suh, S. J., Jang, G. E., & Yoon, D. H. (2005). Crystallization of a-Si: h and a-SiC: h thin films deposited by PECVD. Journal of Ceramic Processing & Research, 6(4): 294-297.

25.      Chen, E., Du, G., Zhang, Y., Qin, X., Lai, H. and Shi, W. (2014). RF-PECVD deposition and optical properties of hydrogenated amorphous silicon carbide thin films. Ceramics International, 40(7): 9791-9797.

26.      Kuznetsov V. L. and Butenko Y. V. (2006). Diamond phase transitions at nanoscale in ultrananocrystalline diamond: Synthesis, properties and applications. William Andrew Publishing, New York: pp. 405-475.

27.      Lin, Z., Guo, Y., Song, C., Song, J., Wang, X., Zhang, Y., ... and Huang, X. (2015). Influence of the oxygen content in obtaining tunable and strong photoluminescence from low-temperature grown silicon oxycarbide films. Journal of Alloys and Compounds, 633: 153-156.

28.      Peri, B., Borah, B. and Dash, R. K. (2015). Effect of RF power and gas flow ratio on the growth and morphology of the PECVD SiC thin film s for MEMS applications. Bulletin of Materials Science, 38(4): 1105-1112.

29.      El Khalfi, A. I., Ech-chamikh, E. M., Ijdiyaou, Y., Azizan, M., Essafti, A., Nkhaili, L. and Outzourhit, A. (2014). Infrared and Raman study of amorphous silicon carbide thin films deposited by radiofrequency cosputtering. Spectroscopy Letters, 47(5): 392-396.

30.      ElGazzar, H., Abdel-Rahman, E., Salem, H. G. and Nassar, F. (2010). Preparation and characterizations of amorphous nanostructured SiC thin films by low energy pulsed laser deposition. Applied Surface Science, 256(7): 2056-2060.

31.      Bosi, M., Attolini, G., Negri, M., Frigeri, C., Buffagni, E., Ferrari, C., ... and Verucchi, R. (2013). Optimization of a buffer layer for cubic silicon carbide growth on silicon substrates. Journal of Crystal Growth, 383: 84-94.

32.      Radmilovic, V., Dahmen, U., Gao, D., Stoldt, C. R., Carraro, C. and Maboudian, R. (2007). Formation of< 111> fiber texture in β-SiC films deposited on Si (100) substrates. Diamond and Related Materials, 16(1): 74-80.

33.      Wu, X. L., Gu, Y., Xiong, S. J., Zhu, J. M., Huang, G. S., Bao, X. M. and Siu, G. G. (2003). Self-organized growth and optical emission of silicon-based nanoscale β-SiC quantum dots. Journal of Applied Physics, 94(8): 5247-5251.