Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1102 - 1111
CONVERTING WASTE CHICKEN
BONES INTO HETEROGENEOUS CATALYST FOR BIODIESEL SYNTHESIS FROM WASTE COOKING
OIL
(Pertukaran Sisa Tulang Ayam kepada Mangkin Hetrogen Bagi
Penghasilan Biodiesel dari Minyak Masak Terpakai)
Jeyashelly Andas*
and Nur Fazira Elyana Jusoh
Faculty of Applied Sciences,
Universiti Teknologi MARA,
Cawangan Perlis, Kampus Arau, Perlis, Malaysia
*Corresponding
author: drshelly@uitm.edu.my
Received: 16 November 2021; Accepted:
5 February 2022; Published: 30 October
2022
Abstract
Depletion
of non-renewable energy sources such as petroleum has triggered researchers to
design a green catalyst for the synthesis of biodiesel. Thus, in this study,
chicken bones were subjected to calcination-hydration-dehydration treatment to
obtain a catalyst of high activity for the production of biodiesel from waste
cooking oil (WCO). The physicochemical properties of the synthesized catalysts
were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and N2
adsorption-desorption. The catalyst prepared via
calcination-hydration-dehydration treatment (C900-600) exhibited improved
surface area (SBET, 71.14 m2g-1) and BJH pore diameter of
31.03 nm, in comparison with chicken bone derived catalyst
calcined at 900 ˚C (C900) and
commercial CaO with 31.72 m2g-1,
29.35 nm and 2.21 m2g-1, 15.98 nm, respectively. After 45
min, the activity of 5 wt.% catalysts in the transesterification of WCO with
1:15 oil to methanol ratio at 65 °C, increased as the following trend: C900-600
(92.15%) > C900 (80.63%) > commercial CaO
(73.30%). C900-600 was truly a stable and reused catalyst, sustaining its
activity of 87.00% even after five consecutive cycles. This research
undoubtedly promises a cheap utilization of waste chicken bones for the
conversion of WCO into renewable energy sources.
Keywords: waste
chicken bones, biodiesel, waste cooking oil, acid value, reusability
Abstrak
Kekurangan sumber tenaga yang tidak
boleh diperbaharui seperti petroleum telah mendorong para penyelidik untuk
menghasilkan mangkin hijau untuk sintesis biodiesel. Maka, dalam penyelidikan
ini, sisa tulang ayam telah dirawat menggunakan kalsinasi-hidrasi-dehidrasi
untuk menghasilkan mangkin yang aktif
dalam penghasilan biodiesel dari minyak masak terpakai. Ciri fizikokimia
mangkin telah dianalisis menggunakan Spektroskopi Inframerah Transformasi
Fourier (FTIR) dan N2 penjerapan-penyahjerapan. Mangkin yang
disediakan menggunakan rawatan kalsinasi-hidrasi-dehidrasi (C900-600)menunjukkan
peningkatan luas permukaan BET (SBET, 71.14 m2g-1) dan
diameter liang BJH; 31.03 nm, dibandingkan dengan mangkin dari sisa tulang ayam
yang dikalsinasi pada suhu 900 ˚C (C900) dan CaO komersial dengan
masing-masing merekodkan 31.72 m2g-1, 29.35 nm dan 2.21 m2g-1,
15.98 nm. Selepas 45 min, aktiviti mangkin (5% berat) dalam transesterifikasi
minyak masak terpakai dengan nisbah minyak dan metanol 1:15 pada 65 °C
meningkat berdasarkan tren berikut: C900-600 (92.15%)> C900 (80.63%)> CaO
komersial (73.30% ). C900-600 merupakan mangkin yang stabil dan boleh
digunapakai, mengekalkan aktivitinya sebanyak 87.00% walaupun setelah lima
kekerapan dikitar semula. Penyelidikan ini pasti menjanjikan penggunaan sisa
tulang ayam yang murah untuk penukaran minyak masak terpakai menjadi sumber
tenaga yang boleh diperbaharui.
Kata kunci: sisa tulang
ayam, biodiesel, minyak masak terpakai, nilai asid, kitar semula
References
1.
Vasić, K., Hojnik Podrepšek, G., Knez, Ž. and Leitgeb, M. (2020). Biodiesel production using solid acid
catalysts based on metal oxides. Catalysts, 10(2): 237.
2.
Farooq,
M., Ramli, A. and Naeem, A. (2015). Biodiesel production from low FFA waste
cooking oil using heterogeneous catalyst derived from chicken bones. Renewable
Energy, 76: 362-368.
3.
Zik, N. A. F. A., Sulaiman,
S. and Jamal, P. (2020). Biodiesel production from waste cooking oil using
calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed
reactor. Renewable Energy, 155: 267-277.
4.
AbuKhadra,
M. R., Basyouny, M. G., El-Sherbeeny,
A. M., El-Meligy, M. A., and Abd Elatty,
E. (2020). Transesterification of commercial waste cooking oil into biodiesel
over innovative alkali trapped zeolite nanocomposite as green and environmental
catalysts. Sustainable Chemistry and Pharmacy, 17: 100289.
5.
Pauline, J. M. N., Sivaramakrishnan, R., Pugazhendhi,
A., Anbarasan, T. and Achary,
A. (2021). Transesterification kinetics of waste cooking oil and its diesel
engine performance. Fuel, 285: 119108
6.
Navajas, A., Issariyakul, T., Arzamendi, G., Gandía, L. M. and
Dalai, A. K. (2013). Development of eggshell derived catalyst for
transesterification of used cooking oil for biodiesel production. Asia-Pacific Journal of Chemical
Engineering,
8(5): 742-748.
7.
Niju, S., Meera, K. M., Begum, S. and Anantharaman, N. (2014). Modification of egg shell and its
application in biodiesel production. Journal of Saudi Chemical Society,
18(5): 702-706.
8.
Mansir, N., Teo, S. H., Ibrahim, M. L. and Hin, T. Y. Y. (2017). Synthesis and application of waste
egg shell derived CaO supported W-Mo mixed oxide
catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy
Conversion and Management, 151: 216-226.
9.
Borah,
M. J., Das, A., Das, V., Bhuyan, N. and Deka, D.
(2019). Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel,
242: 345-354.
10.
AlSharifi, M. and Znad, H. (2019).
Development of a lithium-based chicken bone (Li-Cb)
composite as an efficient catalyst for biodiesel production. Renewable Energy,
136: 856-864.
11.
Tan,
Y. H., Abdullah, M. O., Kansedo, J., Mubarak, N. M.,
San Chan, Y. and Nolasco-Hipolito, C. (2019). Biodiesel production from used
cooking oil using green solid catalyst derived from calcined fusion waste
chicken and fish bones. Renewable Energy, 139: 696-70.
12.
Khan,
H. M., Iqbal, T., Ali, C. H., Javaid, A., and Cheema, I. I. (2020). Sustainable
biodiesel production from waste cooking oil utilizing waste ostrich (Struthio
camelus) bones derived heterogeneous catalyst. Fuel, 277: 118091.
13.
Sirisomboonchai, S., Abuduwayiti,
M., Guan, G., Samart, C., Abliz,
S., Hao, X. and Abudula, A. (2015). Biodiesel
production from waste cooking oil using calcined scallop shell as catalyst. Energy
Conversion and Management, 95: 242-247.
14.
Dehkordi, A. M., and Ghasemi, M.
(2012). Transesterification of waste cooking oil to biodiesel using Ca and Zr
mixed oxides as heterogeneous base catalysts. Fuel Processing Technology,
97: 45-51.
15.
Lin,
Y. C., Amesho, K. T., Chen, C. E., Cheng, P. C. and
Chou, F. C. (2020). A cleaner process for green biodiesel synthesis from waste
cooking oil using recycled waste oyster shells as a sustainable base
heterogeneous catalyst under the microwave heating system. Sustainable
Chemistry and Pharmacy, 17: 100310.
16.
Carmelo
Firlito (2020). The poultry industry and its supply
chain in Malaysia: Challenges from the Covid-19 Emergency. [Access online 7
September 2021].
17.
Hanny, A., Islam, M. R., Sumdani,
M. G. and Rashidi, N. M. (2019). The effects of sintering on the properties of
epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer
Testing, 78: 105987.
18.
Satraidi, H., Prasetyaningrum,
A., Ningrum, A. S. and Dewi,
R. O. N. (2019). Development of heterogeneous catalyst from chicken bone and
catalytic testing for biodiesel with simultaneous processing. In IOP
Conference Series: Materials Science and Engineering, 509(1): 012125.
19.
Asikin-Mijan, N., Lee, H. V. and Taufiq-Yap, Y. H. (2015).
Synthesis and catalytic activity of hydration–dehydration treated clamshell
derived CaO for biodiesel production. Chemical
Engineering Research and Design, 102: 368-377
20.
Khoo,
W., Nor, F. M., Ardhyananta, H. and Kurniawan, D.
(2015). Preparation of natural hydroxyapatite from bovine femur bones using
calcination at various temperatures. Procedia Manufacturing, 2:
196-201.Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan,
K. R. and Ramasubbu, A. (2012). Biodiesel production
from palm oil using calcined waste animal bone as catalyst. Bioresource
Technology, 116: 512-516.
21.
Yoosuk, B., Udomsap, P., Puttasawat, B. and Krasae, P.
(2010). Modification of calcite by hydration–dehydration method for
heterogeneous biodiesel production process: The effects of water on properties
and activity. Chemical Engineering Journal, 162(1): 135-141.
22.
Pan,
Y., Alam, M. A., Wang, Z., Wu, J., Zhang, Y. and
Yuan, Z. (2016). Enhanced esterification of oleic acid and methanol by deep
eutectic solvent assisted Amberlyst heterogeneous
catalyst. Bioresource Technology, 220: 543-548.
23.
Corro, G., Sánchez, N., Pal, U. and Bañuelos,
F. (2016). Biodiesel production from waste frying oil using waste animal bone
and solar heat. Waste Management, 47: 105-113.
24.
Tan,
Y. H., Abdullah, M. O., Nolasco-Hipolito, C. and Taufiq-Yap, Y. H. (2015).
Waste ostrich-and chicken-eggshells as heterogeneous base catalyst for
biodiesel production from used cooking oil: Catalyst characterization and
biodiesel yield performance. Applied Energy, 160: 58-70.
25.
AlSharifi, M., and Znad, H.
(2020). Transesterification of waste canola oil by lithium/zinc composite
supported on waste chicken bone as an effective catalyst. Renewable Energy, 151,
740-749.
26.
Adam, F., Andas, J., & Rahman, I. A. (2010). A study on the
oxidation of phenol by heterogeneous iron silica catalyst. Chemical
Engineering Journal, 165(2), 658-667.
27.
Aworanti,
O. A., Ajani, A. O., Agarry, S. E., Babatunde, K. A.,
& Akinwumi, O. D. (2019). Evaluation of process
parameters for biodiesel production from vegetable and palm waste frying oils
using a homogeneous catalyst. International Journal of Energy
Engineering, 9(2), 25-35.
28.
Girish,
N., Niju, S. P., Begum, K. M. M. S., & Anantharaman, N. (2013). Utilization of a cost-effective
solid catalyst derived from natural white bivalve clam shell for
transesterification of waste frying oil. Fuel, 111: 653-658