Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1102 - 1111

 

CONVERTING WASTE CHICKEN BONES INTO HETEROGENEOUS CATALYST FOR BIODIESEL SYNTHESIS FROM WASTE COOKING OIL

 

(Pertukaran Sisa Tulang Ayam kepada Mangkin Hetrogen Bagi Penghasilan Biodiesel dari Minyak Masak Terpakai)

 

Jeyashelly Andas* and Nur Fazira Elyana Jusoh

 

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Perlis, Kampus Arau, Perlis, Malaysia

 

*Corresponding author: drshelly@uitm.edu.my

 

 

Received: 16 November 2021; Accepted: 5 February 2022; Published:  30 October 2022

 

 

Abstract

Depletion of non-renewable energy sources such as petroleum has triggered researchers to design a green catalyst for the synthesis of biodiesel. Thus, in this study, chicken bones were subjected to calcination-hydration-dehydration treatment to obtain a catalyst of high activity for the production of biodiesel from waste cooking oil (WCO). The physicochemical properties of the synthesized catalysts were analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and N2 adsorption-desorption. The catalyst prepared via calcination-hydration-dehydration treatment (C900-600) exhibited improved surface area (SBET, 71.14 m2g-1) and BJH pore diameter of 31.03 nm, in comparison with chicken bone derived catalyst calcined at    900 ˚C (C900) and commercial CaO with 31.72 m2g-1, 29.35 nm and 2.21 m2g-1, 15.98 nm, respectively. After 45 min, the activity of 5 wt.% catalysts in the transesterification of WCO with 1:15 oil to methanol ratio at 65 °C, increased as the following trend: C900-600 (92.15%) > C900 (80.63%) > commercial CaO (73.30%). C900-600 was truly a stable and reused catalyst, sustaining its activity of 87.00% even after five consecutive cycles. This research undoubtedly promises a cheap utilization of waste chicken bones for the conversion of WCO into renewable energy sources.

 

Keywords: waste chicken bones, biodiesel, waste cooking oil, acid value, reusability 

 

Abstrak

Kekurangan sumber tenaga yang tidak boleh diperbaharui seperti petroleum telah mendorong para penyelidik untuk menghasilkan mangkin hijau untuk sintesis biodiesel. Maka, dalam penyelidikan ini, sisa tulang ayam telah dirawat menggunakan kalsinasi-hidrasi-dehidrasi untuk menghasilkan mangkin yang aktif  dalam penghasilan biodiesel dari minyak masak terpakai. Ciri fizikokimia mangkin telah dianalisis menggunakan Spektroskopi Inframerah Transformasi Fourier (FTIR) dan N2 penjerapan-penyahjerapan. Mangkin yang disediakan menggunakan rawatan kalsinasi-hidrasi-dehidrasi (C900-600)menunjukkan peningkatan luas permukaan BET (SBET, 71.14 m2g-1) dan diameter liang BJH; 31.03 nm, dibandingkan dengan mangkin dari sisa tulang ayam yang dikalsinasi pada suhu 900 ˚C (C900) dan CaO komersial dengan masing-masing merekodkan 31.72 m2g-1, 29.35 nm dan 2.21 m2g-1, 15.98 nm. Selepas 45 min, aktiviti mangkin (5% berat) dalam transesterifikasi minyak masak terpakai dengan nisbah minyak dan metanol 1:15 pada 65 °C meningkat berdasarkan tren berikut: C900-600 (92.15%)> C900 (80.63%)> CaO komersial (73.30% ). C900-600 merupakan mangkin yang stabil dan boleh digunapakai, mengekalkan aktivitinya sebanyak 87.00% walaupun setelah lima kekerapan dikitar semula. Penyelidikan ini pasti menjanjikan penggunaan sisa tulang ayam yang murah untuk penukaran minyak masak terpakai menjadi sumber tenaga yang boleh diperbaharui.

 

Kata kunci: sisa tulang ayam, biodiesel, minyak masak terpakai, nilai asid, kitar semula

 


 

References

1.              Vasić, K., Hojnik Podrepšek, G., Knez, Ž. and Leitgeb, M. (2020). Biodiesel production using solid acid catalysts based on metal oxides. Catalysts, 10(2): 237.

2.              Farooq, M., Ramli, A. and Naeem, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76: 362-368.

3.              Zik, N. A. F. A., Sulaiman, S. and Jamal, P. (2020). Biodiesel production from waste cooking oil using calcium oxide/nanocrystal cellulose/polyvinyl alcohol catalyst in a packed bed reactor. Renewable Energy, 155: 267-277.


4.              AbuKhadra, M. R., Basyouny, M. G., El-Sherbeeny, A. M., El-Meligy, M. A., and Abd Elatty, E. (2020). Transesterification of commercial waste cooking oil into biodiesel over innovative alkali trapped zeolite nanocomposite as green and environmental catalysts. Sustainable Chemistry and Pharmacy, 17: 100289.

5.              Pauline, J. M. N., Sivaramakrishnan, R., Pugazhendhi, A., Anbarasan, T. and Achary, A. (2021). Transesterification kinetics of waste cooking oil and its diesel engine performance. Fuel, 285: 119108

6.              Navajas, A., Issariyakul, T., Arzamendi, G., Gandía, L. M. and Dalai, A. K. (2013). Development of eggshell derived catalyst for transesterification of used cooking oil for biodiesel production. Asia-Pacific Journal of Chemical Engineering, 8(5): 742-748.

7.              Niju, S., Meera, K. M., Begum, S. and Anantharaman, N. (2014). Modification of egg shell and its application in biodiesel production. Journal of Saudi Chemical Society, 18(5): 702-706.

8.              Mansir, N., Teo, S. H., Ibrahim, M. L. and Hin, T. Y. Y. (2017). Synthesis and application of waste egg shell derived CaO supported W-Mo mixed oxide catalysts for FAME production from waste cooking oil: Effect of stoichiometry. Energy Conversion and Management, 151: 216-226.

9.              Borah, M. J., Das, A., Das, V., Bhuyan, N. and Deka, D. (2019). Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel, 242: 345-354.

10.           AlSharifi, M. and Znad, H. (2019). Development of a lithium-based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production. Renewable Energy, 136: 856-864.

11.           Tan, Y. H., Abdullah, M. O., Kansedo, J., Mubarak, N. M., San Chan, Y. and Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 139: 696-70.

12.           Khan, H. M., Iqbal, T., Ali, C. H., Javaid, A., and Cheema, I. I. (2020). Sustainable biodiesel production from waste cooking oil utilizing waste ostrich (Struthio camelus) bones derived heterogeneous catalyst. Fuel, 277: 118091.

13.           Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X. and Abudula, A. (2015). Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management, 95: 242-247.

14.           Dehkordi, A. M., and Ghasemi, M. (2012). Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Processing Technology, 97: 45-51.

15.           Lin, Y. C., Amesho, K. T., Chen, C. E., Cheng, P. C. and Chou, F. C. (2020). A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustainable Chemistry and Pharmacy, 17: 100310.

16.           Carmelo Firlito (2020). The poultry industry and its supply chain in Malaysia: Challenges from the Covid-19 Emergency. [Access online 7 September 2021].

17.           Hanny, A., Islam, M. R., Sumdani, M. G. and Rashidi, N. M. (2019). The effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polymer Testing, 78: 105987.

18.           Satraidi, H., Prasetyaningrum, A., Ningrum, A. S. and Dewi, R. O. N. (2019). Development of heterogeneous catalyst from chicken bone and catalytic testing for biodiesel with simultaneous processing. In IOP Conference Series: Materials Science and Engineering, 509(1): 012125.

19.           Asikin-Mijan, N., Lee, H. V. and Taufiq-Yap, Y. H. (2015). Synthesis and catalytic activity of hydration–dehydration treated clamshell derived CaO for biodiesel production. Chemical Engineering Research and Design, 102: 368-377

20.           Khoo, W., Nor, F. M., Ardhyananta, H. and Kurniawan, D. (2015). Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures. Procedia Manufacturing, 2: 196-201.Obadiah, A., Swaroopa, G. A., Kumar, S. V., Jeganathan, K. R. and Ramasubbu, A. (2012). Biodiesel production from palm oil using calcined waste animal bone as catalyst. Bioresource Technology, 116: 512-516.

21.           Yoosuk, B., Udomsap, P., Puttasawat, B. and Krasae, P. (2010). Modification of calcite by hydration–dehydration method for heterogeneous biodiesel production process: The effects of water on properties and activity. Chemical Engineering Journal, 162(1): 135-141.

22.           Pan, Y., Alam, M. A., Wang, Z., Wu, J., Zhang, Y. and Yuan, Z. (2016). Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst. Bioresource Technology, 220: 543-548.

23.           Corro, G., Sánchez, N., Pal, U. and Bañuelos, F. (2016). Biodiesel production from waste frying oil using waste animal bone and solar heat. Waste Management, 47: 105-113.

24.           Tan, Y. H., Abdullah, M. O., Nolasco-Hipolito, C. and Taufiq-Yap, Y. H. (2015). Waste ostrich-and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Applied Energy, 160: 58-70.

25.           AlSharifi, M., and Znad, H. (2020). Transesterification of waste canola oil by lithium/zinc composite supported on waste chicken bone as an effective catalyst. Renewable Energy, 151, 740-749.

26.           Adam, F., Andas, J., & Rahman, I. A. (2010). A study on the oxidation of phenol by heterogeneous iron silica catalyst. Chemical Engineering Journal165(2), 658-667.

27.           Aworanti, O. A., Ajani, A. O., Agarry, S. E., Babatunde, K. A., & Akinwumi, O. D. (2019). Evaluation of process parameters for biodiesel production from vegetable and palm waste frying oils using a homogeneous catalyst. International Journal of Energy Engineering9(2), 25-35.

28.           Girish, N., Niju, S. P., Begum, K. M. M. S., & Anantharaman, N. (2013). Utilization of a cost-effective solid catalyst derived from natural white bivalve clam shell for transesterification of waste frying oil. Fuel, 111: 653-658