Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1082 - 1101
EVALUATION
OF PHYSICOCHEMICAL PROFILE, MULTI ELEMENTAL COMPOSITION AND ANTIOXIDANT
PROPERTY OF Heterotrigona itama
FROM NORTHERN REGION IN MALAYSIA
(Penilaian Profil Fizikokimia, Komposisi Berbilang Unsur dan
Sifat Antioksidan Heterotrigona itama Dari Wilayah Utara Di Malaysia)
Amira
Syafiqah Jamaludin1, Mardiana Saaid1*, Ganapaty
Manickavasagam1, Ho Boon Han1,
Norsyafiah
Muhamad Faizal1, Rozita Osman2
1School of Chemical Sciences,
Universiti Sains Malaysia, 11800 USM,
Pulau Pinang, Malaysia
2Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
*Corresponding
author: mardiana@usm.my
Received: 25 March 2022; Accepted: 19
July 2022; Published: 30 October 2022
Abstract
Studies on
physical and chemical compositions of stingless bee honey from northern region
in Malaysia are still limited. Therefore, this study evaluates the
physicochemical profile [pH, free acidity, ash content, total dissolved solids
(TDS) and 5-hydroxymethylfurfural (5-HMF)], multi-elemental
composition and antioxidant property of fresh stingless bee honey of Heterotrigona itama.
Twenty honey samples were collected from the Northern regions (Kedah and
Penang) of Malaysia. The results revealed that the values for pH, free acidity,
ash content, and TDS were pH 3.01-3.43, 65.42-184.66 meq/kg,
0.07-0.61 g/100g, and 258.83-365.67 ppm, respectively. The concentration of
5-HMF in the honey samples elevated from not detected (fresh) to a maximum of
214.38 mg/kg (after 6- and 15-months storage). For multi-elemental composition,
potassium was the highest concentration (16.13-1623.75 mg/kg) followed by
calcium (36.23-272.5 mg/kg), sodium (31.25-148.25 mg/kg), aluminum (25.35-62.25
mg/L) and magnesium (11.14-179.75 mg/kg). Iron (< 0.02-41.55 mg/kg), copper
(< 0.05-23.15 mg/kg), manganese (< 0.02-13.85 m/kg) and zinc (<
0.01-4.63 mg/kg) were found in low concentrations. Arsenic, lead, nickel,
barium, cadmium and chromium were found in lower concentrations than the limit
of detection, which indicates no contamination or environmental pollution on
the studied areas. The total phenolic content (TPC) of the samples was 95.0-364.9
mg GAE/100g, showed relevant amounts of antioxidant properties, suggesting a
source of natural antioxidants. In conclusion, the ash content, pH, and 5-HMF
of fresh honey samples were compliant with the limit set by the Malaysian
Standards. The 5-HMF concentration of all the honey samples after prolonged
storage for six months exceeded the permitted range, which indicates that the
honey samples deteriorated. Therefore, it is advised to consume the honey in
less than six months.
Keywords: Stingless bee honey, Heterotrigona itama, northern Malaysia, physicochemical properties,
multi-element
Abstrak
Kajian tentang komposisi fizikal dan kimia madu lebah
tanpa sengat dari wilayah utara di Malaysia masih terhad. Oleh itu, kajian ini
menilai profil fizikokimia (pH, keasidan bebas, kandungan abu, jumlah pepejal
terlarut (TDS) dan 5-hidroksimetilfurfural (5-HMF)), komposisi pelbagai unsur
dan sifat antioksidan madu lebah tanpa sengat segar iaitu Heterotrigona
itama. Dua puluh sampel madu telah dikumpul dari wilayah Utara (Kedah dan
Pulau Pinang) Malaysia. Keputusan menunjukkan bahawa nilai pH, keasidan bebas,
kandungan abu, dan TDS masing-masing adalah pH 3.01-3.43, 65.42-184.66 meq/kg,
0.07-0.61 g/100g dan 258.83-365.67 ppm. Kepekatan 5-HMF dalam sampel madu
adalah daripada tidak dikesan (segar) kepada maksimum 214.38 mg/kg (selepas
penyimpanan 6 dan 15 bulan). Bagi komposisi berbilang unsur, kalium adalah
berkepekatan tertinggi (16.13-1623.75 mg/kg) diikuti kalsium (36.23-272.5
mg/kg), natrium (31.25-148.25 mg/kg), aluminium (25.35-62.25 mg/L) dan
magnesium (11.14-179.75 mg/kg). Besi (< 0.02-41.55 mg/kg), kuprum (<
0.05-23.15 mg/kg), mangan (< 0.02-13.85 m/ kg) dan zink (< 0.01-4.63
mg/kg) didapati dalam kepekatan rendah. Arsenik, plumbum, nikel, barium,
kadmium dan kromium didapati mempunyai kepekatan lebih rendah daripada had
pengesanan yang menunjukkan tiada pencemaran atau pencemaran alam sekitar di
kawasan yang dikaji. TPC sampel ialah 95.0-364.9 mg GAE/100g, menunjukkan
jumlah sifat antioksidan yang relevan, mencadangkan sumber antioksidan
semulajadi. Kesimpulannya, kandungan abu, pH, dan 5-HMF sampel madu segar
adalah mematuhi had yang ditetapkan oleh Piawaian Malaysia. Kepekatan 5-HMF
bagi semua sampel madu selepas penyimpanan berpanjangan selama 6 bulan telah
melebihi julat yang dibenarkan, menunjukkan sampel madu semakin merosot. Oleh
itu, adalah dinasihatkan untuk mengambil madu kurang daripada 6 bulan.
Kata kunci:
madu
lebah tanpa sengat, Heterotrigona itama, utara Malaysia, sifat
fizikokimia, pelbagai unsur
References
1.
Nordin, A., Omar, N., Sainik,
N. Q. A. V., Chowdhury, S. R., Omar, E., Saim, A. and Idrus, R. (2018). Low
dose stingless bee honey increases viability of human dermal fibroblasts that
could potentially promote wound healing. Wound
Medicine, 23: 22-27.
2.
Lourenço, C. T., Carvalho, S.
M., Malaspina, O. and Nocelli, R. C. F. (2012). Oral toxicity of fipronil
insecticide against the stingless bee Melipona scutellaris (Latreille,
1811). Bulletin of Environmental
Contamination and Toxicology, 89(4): 921-924.
3.
Rao, P. V., Krishnan, K. T.,
Salleh, N. and Gan, S. H. (2016). Biological and therapeutic effects of honey
produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia,
26(5): 657-664.
4.
Bilandžić, N., Tlak
Gajger, I., Kosanović, M., Čalopek, B., Sedak, M., Solomun
Kolanović, B., Varenina, I., Luburić, Đ. B., Varga, I. and
Đokić, M. (2017). Essential and toxic element concentrations in
monofloral honeys from southern Croatia. Food
Chemistry, 234: 245-253.
5.
Shamsudin, S., Selamat, J.,
Sanny, M., Abd. Razak, S. B., Jambari, N. N., Mian, Z. and Khatib, A. (2019).
Influence of origins and bee species on physicochemical, antioxidant properties
and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1): 238-263.
6.
Biluca, F. C., Braghini, F.,
Gonzaga, L. V., Costa, A. C. O. and Fett, R. (2016). Physicochemical profiles,
minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis,
50: 61-69.
7.
Karabagias, I. K., Badeka, A.
V., Kontakos, S., Karabournioti, S. and Kontominas, M. G. (2014). Botanical
discrimination of Greek unifloral honeys with physico-chemical and chemometric
analyses. Food Chemistry, 165:
181-190.
8.
Solayman, M., Islam, M. A., Paul,
S., Ali, Y., Khalil, M. I., Alam, N. and Gan, S. H. (2016). Physicochemical
properties, minerals, trace elements, and heavy metals in honey of different
origins: A comprehensive review. Comprehensive
Reviews in Food Science and Food Safety, 15(1): 219-233.
9.
Jalil, M. A. A., Kasmuri, A.
R. and Hadi, H. (2017). Stingless bee honey, the natural wound healer: A
review. Skin Pharmacology and Physiology,
30(2): 66-75.
10. Ediriweera,
E. R. H. S. S. and Premarathna, N. Y. S. (2018). Medicinal and cosmetic uses of
bee’s honey – A review. An International
Quarterly Journal of Research in Ayurveda, 33(2): 178-182.
11. Fatima,
I.J., Mohd Hilmi, A.B., Salwani, I. and Lavaniya, M. (2018). Physicochemical
characteristics of Malaysian stingless bee honey from Trigona species. International Medical Journal Malaysia,
17 (Special Issue): 187-191.
12. Ya’akob,
H., Norhisham, N.F., Mohamed, M., Sadek, N. and Endrini, S. (2019). Evaluation
of physicochemical properties of Trigona sp . stingless bee honey from various
districts of Johor. Jurnal Kejuruteraan,
2(1): 59-67.
13. Department
of Standards Malaysia (2017). Kelulut (Stingless bee) honey - Specification.
14. Bogdanov,
S. and Martin, P. (2002). Honey
authenticity : A review. Swiss Bee Research Centre: pp 20.
15. Prica,
N., Baloš, M. Ž, Jakšić, S., Mihaljev, Ž., Kartalović, B.,
Babić, J. and Savić, S. (2015). Moisture and acidity as indicators of
the quality of honey originating from Vojvodina region. Archives of
Veterinary Medicine, 7(2):
99-109.
16. Ananias, K. R., de Melo, A. A. M. and de Moura, C. J. (2013).
Analysis of moisture content, acidity and contamination by
yeast and molds in Apis mellifera L. honey from central Brazil. Brazilian
Journal of Microbiology, 44(3):
679-683.
17. Salazar,
L. N., Freitas, A. B. B. de, Luz, M. V. da, Bersch, P. and Salazar, R. F. dos
S. (2017). Physicochemical characterization of honey from different regions in
Rio Grande Do Sul State labeled with different inspection service stamps. Ciência
e Natura, 39(3): 656.
18. Moniruzzaman,
M., Sulaiman, S. A., Khalil, M. I. and Gan, S. H. (2013). Evaluation of
physicochemical and antioxidant properties of sourwood and other Malaysian
honeys: A comparison with manuka honey. Chemistry Central Journal, 7(1):
1-12.
19. Ng, W.-J., Sit, N.-W., Ooi, P.A.-C., Ee, K.-Y. and Lim, T.-M. (2021). Botanical origin
differentiation of Malaysian stingless bee honey produced by Heterotrigona itama
and Geniotrigona thoracica
using chemometrics. Molecules, 26:
7628.
20. Vit, P.,
Rodríguez-Malaver, A., Roubik, D. W., Moreno, E., Almeida, B. S., Sancho, M.
T., Fernández-Muiño, M., Almeida-Anacleto, D., Carlos, L. M., Gil, F.,
González, C., Aguilera, G. and Nieves, B. (2009). Expanded parameters to assess
the quality of honey from Venezuelan bees (Apis melllifera). Journal
of ApiProduct and ApiMedical Science, 1(3): 72-81.
21. Al-Farsi,
M., Al-Amri, A., Al-Hadhrami, A. and Al-Belushi, S. (2018). Color, flavonoids,
phenolics and antioxidants of Omani honey. Heliyon, 4(10): e00874.
22. Abbas,
M., Saeed, F., Anjum, F. M., Afzaal, M., Tufail, T., Bashir, M. S., Ishtiaq,
A., Hussain, S. and Suleria, H. A. R. (2017). Natural polyphenols: An overview.
International Journal of Food Properties, 20(8): 1689-1699.
23. Alves,
A., Ramos, A., Gonçalves, M. M., Bernardo, M. and Mendes, B. (2013).
Antioxidant activity, quality parameters and mineral content of Portuguese
monofloral honeys. Journal of Food Composition and Analysis, 30(2): 130-138.
24. Noreen,
H., Semmar, N., Farman, M. and McCullagh, J. S. O. (2017). Measurement of total
phenolic content and antioxidant activity of aerial parts of medicinal plant
Coronopus didymus. Asian Pacific Journal of Tropical Medicine, 10(8): 792-801.
25. Oliveira, A. M. D. F., Pinheiro, L. S., Pereira, C. K. S.,
Matias, W. N., Gomes, R. A., Chaves, O. S., de Souza, M. de F. V., de Almeida,
R. N. and de Assis, T. S. (2012). Total phenolic content and
antioxidant activity of some malvaceae family species. Antioxidants, 1(1): 33-43.
26. Bendini,
A., Cerretani, L., Pizzolante, L., Toschi, T. G., Guzzo, F., Ceoldo, S.,
Marconi, A. M., Andreetta, F. and Levi, M. (2006). Phenol content related to
antioxidant and antimicrobial activities of Passiflora spp. extracts. European
Food Research and Technology, 223(1):
102-109.
27. Wong,
C. C., Li, H. Bin, Cheng, K. W. & Chen, F. (2006). A systematic survey of
antioxidant activity of 30 Chinese medicinal plants using the ferric reducing
antioxidant power assay. Food Chemistry, 97(4): 705–711.
28. Dawidowicz,
A. L. and Olszowy, M. (2010). Influence of some experimental variables and
matrix components in the determination of antioxidant properties by
β-carotene bleaching assay: Experiments with BHT used as standard
antioxidant. European Food Research and Technology, 231(6): 835-840.
29. Abu
Bakar, M. F., Sanusi, S. B., Abu Bakar, F. I., Cong, O. J. and Mian, Z. (2017).
Physicochemical and antioxidant potential of raw unprocessed honey from
malaysian stingless bees. Pakistan Journal of Nutrition, 16(11): 888-894.
30. Bargańska,
Z., ͆lebioda, M. and Namies̈nik, J. (2016). Honey bees and their
products: Bioindicators of environmental contamination. Critical Reviews in
Environmental Science and Technology, 46(3): 235-248.
31. Naggar,
Y. Al, Brinkmann, M., Sayes, C. M., Al-Kahtani, S. N., Dar, S. A., El-Seedi, H.
R., Grünewald, B. and Giesy, J. P. (2021). Are honey bees at risk from
microplastics? Toxics, 9(5):
1-8.
32. Abu-Siada, A., Lai, S. P. and Islam, S. M. (2012). A
novel fuzzy-logic approach for furan estimation in transformer oil. IEEE
Transactions on Power Delivery, 27(2):
469-474.
33. Shapla,
U. M., Solayman, M., Alam, N., Khalil, M. I. and Gan, S. H. (2018).
5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects
on bees and human health. Chemistry Central Journal, 12(1): 1-18.
34. Foo
Yong, W., Makahleh, A., Al-Azzam, K. M., Yahaya, N., Saad, B. and Sulaiman, S.
A. (2012). Micellar electrokinetic chromatography method for the simultaneous
determination of furanic compounds in honey and vegetable oils. Talanta,
97: 23-31.
35. Choudhary,
A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P. and Suri, S. (2021).
5-hydroxymethylfurfural (HMF) formation, occurrence and potential health
concerns: Recent developments. Toxin Reviews, 40(4): 545-561.
36. AOAC (2005). Official methods
of analysis of AOAC international, 17th
Edition.; Association of Analytical Chemists: Gaithersburg, MD, USA.
37. AOAC (2006). Official methods of analysis. 18th
Edition, Association of Official Analytical Chemists, Gaithersburgs,
Gaithersburg, MD, USA.
38. Gul, A. and Pehlivan, T. (2018). Antioxidant activities of some monofloral honey types produced across Turkey. Saudi Journal of Biological Sciences,
25: 1056-1065.
39. ICH Harmonised Tripartite guideline. Validation
of analytical procedures: Text and methodology Q2(R1).
40. Selvaraju, K., Vikram, P., Jan
M. S., Krishnan, K. T. and Mohammed, A. (2019), Melissopalynological,
physicochemical and antioxidant properties of honey from West Coast of
Malaysia. Journal of Food Science and
Technology, 56(5): 2508-2521.
41. Moniruzzaman, M., Khalil, M. I., Sulaiman, S. A. and Siew H. G. (2013). Physicochemical and
antioxidant properties of Malaysian honeys produced by Apis
cerana, Apis dorsata and Apis mellifera.
BMC Complementary and Alternative
Medicine, 13: 43.
42. Boon, K.C., Haron, H., Talib, R.A. and Subramaniam, P. (2017). Physical
properties, antioxidant content and anti-oxidative activities of Malaysian
stingless Kelulut (Trigona spp.) honey. Journal of Agricultural Science, 9: 32-40.
43. Kek, S. P., Chin, N.
L., Yusof, Y. A., Tan, S. W., Suan, L., Kek, S. P.
and Chin, N. L. (2017). Classification of entomological origin of honey based
on its physicochemical and antioxidant properties. International Journal of Food Properties, 20: S2723-S2738.
44. Ranneh, Y., Alia, F., Zarei,
M., Md Akimb, A., Abd Hamid, H. and Khazaai, H. (2018). Malaysian stingless bee and tualang honeys: A comparative characterization of total
antioxidant capacity and phenolic profile using liquid chromatography-mass
spectrometry. LWT-Food Science and
Technology, 89: 1-9.
45. Salim, S. N. M., Ramakreshnan, L., Fong, C. S.,
Wahab, R. A. and Rasad, M. S. B. A. (2019). In-vitro
cytotoxicity of Trigona itama honey against human
lung adenocarcinoma epithelial cell line (A549). European Journal of Integrative Medicine, 30(4): 100955.
46. Wong, P., Ling, HS., Chung, KC., Yau, T. M. S.
and Gindi, S. R. A. (2019). Chemical analysis on the
honey of Heterotrigona itama
and Tetrigona binghami from
Sarawak, Malaysia. Sains Malaysia, 48(8): 1635-1642.
47. Ismail, N. F., Maulidiani, M., Omar, S., Zulkifli,
M. F., Radzi, M. N. F. M., Ismail, N., Jusoh, A. Z., Roowi, S., Wooi M. Y., Rudiyanto, R. and
Ismail, W. I. W. (2021). Classification of stingless bee honey based on
species, dehumidification process and geographical origins using
physicochemical and ATR-FTIR chemometric approach. Journal of Food Composition and Analysis, 104: 104126.
48. Zawawi, N., Jiali Z., Hungerford, N. L.,
Yates, H. S.A., Webber, D. C., Farrell, M., Tinggi, U., Bhandari, B. and
Fletcher M. T. (2022). Unique physicochemical properties and rare reducing
sugar trehalulose mandate new international
regulation for stingless bee honey. Food Chemistry, 373:131566.
49. Silva, T. M. S., dos Santos, F. P.,
Evangelista-Rodrigues, A., da Silva, E. M. S., da Silva, G. S., de Novais, J.
S., dos Santos, F. de A. R. and Camara, C. A. (2013). Phenolic compounds, melissopalynological,
physicochemical analysis and antioxidant activity of Jandaíra
(Melipona subnitida) honey. Journal of Food Composition and Analysis,
29(1): 10-18.
50. da Silva, P.M., Gauche, C., Gonzaga, L.V., Costa, A.C.O. and Fett, R.
(2016) Honey: Chemical composition, stability and authenticity. Food Chemistry, 196: 309-323.
51. Moniruzzaman,
M., Chowdhury, M. A., Rahman, M. A., Sulaiman, S. A. and Gan, S. H. (2014).
Determination of mineral, trace element, and pesticide levels in honey samples
originating from different regions of Malaysia compared to Manuka Honey. BioMed Research International, 2014:
359890.
52. Ng, W. J., Sit, N. W., Ooi, P. A.-C., Ee, K. Y. and Lim, T. M. (2021). Botanical origin
differentiation of Malaysian stingless bee honey produced by Heterotrigona itama
and Geniotrigona thoracica
using chemometrics. Molecules,
26(24): 7628.
53. Gomes, T., Feás, X.,
Iglesias, A. and Estevinho, L. M. (2011). Study of organic honey from the northeast of Portugal. Molecules, 16(7): 5374-5386.
54. Biluca, Fabíola C., Della Betta, F., De Oliveira, G.
P., Pereira, L. M., Gonzaga, L. V., Costa, A. C. O. and Fett, R. (2014). 5-HMF
and carbohydrates content in stingless bee honey by CE before and after thermal
treatment. Food Chemistry, 159(12):
244-249.
55. Vit, P., Roubik, D. W. and Pedro, S. R. M.
(2012). Pot-Honey: A legacy of stingless bees. Springer.
56. Oddo, L. P., Heard, T. A., Rodríguez-Malaver, A.,
Pérez, R. A., Fernández-Muiño, M., Sancho, M. T., Sesta, G., Lusco, L. and Vit, P.
(2008). Composition and antioxidant activity of Trigona carbonaria
honey from Australia. Journal of
Medicinal Food, 11(4): 789-794.
57. Suntiparapop, K., Prapaipong, P. and Chantawannakul,
P. (2012). Chemical and biological properties of honey from Thai stingless bee
(Tetragonula leaviceps).
Journal of Apicultural Research,
51(1): 45-52.
58. Chuttong, B., Chanbang, Y., Sringarm,
K. and Burgett, M. (2015). Efectos del almacenamiento a
largo plazo en la miel de abejas
sin aguijón (Hymenoptera: Meliponini: Apidae).
Journal of
Apicultural Research, 54(5): 441-451.
59. de Sousa, J. M. B., de Souza, E. L., Marques, G., Benassi, M. de T., Gullón, B., Pintado, M. M. and Magnani, M. (2016). Sugar profile, physicochemical and sensory aspects of monofloral
honeys produced by different stingless bee species in Brazilian semi-arid
region. LWT - Food Science and Technology,
65: 645-651.
60. Ahmed, M., Shafiq, M. I., Khaleeq, A., Huma,
R., Qadir, M. A., Khalid, A., Ali, A. & Samad, A. (2016). Physiochemical,
biochemical, minerals content analysis, and antioxidant potential of national
and international honeys in Pakistan. Journal
of Chemistry, 2016: 8072305.
61. Lemos, M. S., Venturieri, G.
C., Dantas Filho, H. A. & Dantas, K. G. F. (2018). Evaluación
de los parámetros físico-químicos
y constituyentes inorgánicos
de mieles de la región amazónica. Journal of Apicultural Research, 57(1): 135-144.
62. Cardona, Y., Torres, A. and Hoffmann, W. (2019). Colombian stingless bee
honeys characterized by multivariate analysis of physicochemical properties. Apidologie,
50(6): 881-892.
63. Julika, W. N., Ajit, A., Sulaiman,
A. Z. and Naila, A. (2019). Physicochemical and
microbiological analysis of stingless bees honey
collected from local market in Malaysia. Indonesian
Journal of Chemistry, 19(2): 522-530.
64. Omar, S., Enchang, F. K., Nazri,
M. U. I. A., Ismail, M. M. and Ismail, W. I. W. (2019). Physicochemical profiles
of honey harvested from four major species of stingless bee (Kelulut) in North East Peninsular of Malaysia. Malaysian Applied Biology, 48(1):
111-116.
65. Wong, P., Hii, S. L., Koh, C. C., Moh, T. S. Y., Gindi, S. R. and
Wong, W. P. M. (2020). Physicochemical and proximate analysis of Heterotrigona itama honey from
inland and coastal regions of Sarawak. ASM
Science Journal, 13(4): 36-44.
66. Jamaludin,
N., Mohammed, N. I., Khamidi, M. F. and Wahab, S. N. A. (2015). Thermal comfort
of residential building in Malaysia at different micro-climates. Procedia -
Social and Behavioral Sciences, 170: 613-623.
67. Capuano, E. and Fogliano, V. (2011). Acrylamide
and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence
in food and mitigation strategies. LWT -
Food Science and Technology, 44(4): 793-810.
68. Ruoff, K., Luginbühl, W., Bogdanov, S., Bosset,
J. O., Estermann, B., Ziolko,
T., Kheradmandan, S. and Amadò,
R. (2007). Quantitative determination of physical and chemical measurands in
honey by near-infrared spectrometry. European
Food Research and Technology, 225(3–4): 415-423.
69. Kędzierska-Matysek, M., Florek, M., Wolanciuk,
A. and Skałecki, P. (2016). Effect of freezing
and room temperatures storage for 18 months on quality of raw rapeseed honey (Brassica
napus). Journal of Food Science and Technology,
53(8): 3349-3355.
70. Wunderlin, D. A., Pesce, S. F., Amé, M. V. and Faye, P. F. (1998). Decomposition of hydroxymethylfurfural in solution and protective effect of
fructose. Journal of Agricultural and
Food Chemistry, 46(5): 1855-1863.
71. Vanhanen, L. P., Emmertz, A. and Savage, G. P. (2011). Mineral analysis of mono-floral New Zealand honey. Food Chemistry, 128(1): 236-240.
72. Cheng, M.Z.S.Z.,
Ismail, M., Chan, K. W., Ooi, D. J., Ismail, N.,
Zawawi, N., Lila, M. A. M. and Esa, N. M. (2019). Comparison of sugar content, mineral elements
and antioxidant properties of Heterotrigona itama honey from suburban and forest in Malaysia. Malaysian Journal of Medicine and Health
Sciences, 15(SP1): 104-112.
73. Muscariello, R., Rendina, D., Giannettino, R., Ippolito,
S., Romano, O., Coretti, F., De Vita S., Martino, M.,
Sepe, C., Nuzzo, V. and ASL NA1 GP Network
Researchers (2021). Calcium daily intake and the efficacy of a training
intervention on optimizing calcium supplementation therapy: A clinical audit. Nutrition, Metabolism & Cardiovascular
Diseases, 31: 354-360.
74. World Health
Organization (2012). Guideline: sodium intake for adults and children. Geneva,
Switzerland.