Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1070 - 1081

 

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM Eleusine indica USING RESPONSE SURFACE METHODOLOGY

 

(Pengoptimuman Pengekstrakan Berbantu Gelombang Mikro bagi Sebatian Fenolik dari Eleusine indica Mengunakan Kaedah Gerak Balas Permukaan)

 

Angelica A. Angeles-Macalalad, Bryan John A. Magoling*, Jennielyn C. De Chavez,

Love Angel H. Flores, Alona B. Intac

 

Department of Chemistry,

College of Arts and Sciences,

Batangas State University-Pablo Borbon, Rizal Avenue, Batangas City, 4200 Philippines

 

*Corresponding author: bryanmagoling@gmail.com

 

 

Received: 28 February 2022; Accepted: 19 May 2022; Published:  30 October 2022

 

 

Abstract

Eleusine indica belongs to the Pocaceae family and is abundantly found in many tropical countries. Because of its anti-malarial, antioxidant, anti-viral, and antidiabetic properties, among many others, studies are being aimed on developing time and cost-effective methods that could efficiently extract its active components. This study focused on the optimization of the microwave-assisted extraction (MAE) of phenolic contents from E. indica. A response surface methodology (RSM) using a Box-Behnken design (BBD) of experiment was employed to determine the optimized condition for the extraction method. The extraction was performed with three varying factors (ethanol concentration, microwave power, and irradiation time) and one response (total phenolic content or TPC). A maximum TPC of 74.81 ± 5.22 GAE mg/g was obtained through MAE, using 57.23% (v/v) ethanol with microwave irradiation of 217.77 W for 4.53 minutes. The optimized condition had an extraction yield of 11.62 ± 1.97%. The ethanolic E. indica extract obtained using the optimum condition contained mostly of triterpenes, saponins and glycosides; and moderately of flavonoids and tannins.

 

Keywords: Eleusine indica, microwave-assisted extraction, phenolic compound extraction, response surface methodology

 

Abstrak

Eleusine indica dari keluarga Pocaceae dan ia sering dijumpai di negara tropika. Oleh kerana sifatnya anti-malaria, antioksida, anti-viral dan antidiabetik, banyak kajian dijalankan bangi membangunkan kaedah yang berkesan dari aspek masa dan kos bagi tujuan pengkestrakan komponen aktif. Kajian ini memberi tumpuan kepada pengoptimuman pengekstrakan berbantu gelombang mikro (MAE) bagi kandungan fenolik dari E. indica. Kaedah gerak balas permukaan (RSM) mengunakan reka bentuk eksperimen Box-Behnken telah dibangunkan bagi penentuan keadaan optimum kaedah pengekstrakan. Pengekstrakan telah dijalankan Bersama tiga faktor (kepekatan etanol, kuasa gelombang mikro, dan masa penyinaran) dan satu respons (jumlah kandungan fenolik atau TPC). Nilai maksimum TPC ialah 74.81 ± 5.22 GAE mg/g diperolehi melalui MAE, mengunakan 57.23% (v/v) etanol bersama 217.77 W penyinaran gelombang mikro selama 4.53 minit. Keadaan optimum telah menghasilkan ekstrak 11.62 ± 1.97%. Ekstrak etanolik E. indica mengunakan keadaan optimum mengandungi triterpen, saponin dan glikosida, dan flavonoid dan tannin.

 

Kata kunci: Eleusine indica, pengekstrakan berbantu gelombang mikro, pengekstrakan sebatian fenolik, kaedaj gerak balas permukaan

 

 

References

1.         Quiroga, E., Sampietro, A. and Vattuone, M. (2001). Screening antifungal activities of selected medicinal plants. Journal of Ethnopharmacology, 74: 89-96.

2.         Zhang, H. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42.

3.         Nile, S., Park, S. W. (2013). Edible Berries: Bioactive components and their effect on human health. Nutrition. Burbank, Los Angeles County, California, 30.

4.    Al-Zubairi, A., Abdul, A., Abdelwahab, S. I., Peng, C. Y. P., Mohan, S. and Elhassan, M. M. (2011). Eleucine indica Possesses Antioxidant, Antibacterial and Cytotoxic Properties. Evidence-based Complementary and Alternative Medicine. eCAM. p. 965370.

5.         Deng, H. and Dai, J. (2009). Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. Journal of Hazardous Materials, 166(2-3): 1514-1521.

6.         Del Rio, D., Borges, G. and Crozier, A. (2010). Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. British Journal of Nutrition, 3: S67-90.

7.      Chitindingu, K., Chitindingu, J. J., Benhura, M. A. N., Marume, A., Mutingwende, I., Bhebhe, M. and Muchuweti, M. (2012). Antioxidant capacity of bioactive compounds extracted from selected wild and domesticated cereals of Zimbabwe. African Journal of Biochemistry Research, 6: 62-68.

8.         Iqbal, M. and Gnanaraj, C. (2012). Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl4)-mediated oxidative hepatic damage in rats. Environmental Health and Preventive Medicine, 17(4): 307-315.

9.         Okokon, J. (2010). Antiplasmodial and antidiabetic activities of Eleusine indica. International Journal of Drug Development and Research, 2: 493-500.

10.      Gruyal, G. (2014). Ethnomedicinal plants used by residents in Northern Surigao del Sur, Philippines. Natural Products Chemistry & Research, 20142-4.

11.    Iberahim, R., Yaacob, A. and Ibrahim, N. (2015). Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau). Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium, 030013-01-030013-04.

12.      Kore K. J., Shete R. V. and Desai N. V. (2011). Anti-arthritic activity of hydroalcoholic extract of Lawsonia Innermis. International Journal of Drug Development and Research, 3: 217-224.

13.      Morah F. and Otuk M. (2015). Antimicrobial and antihelmintic activity of Eleusine indica. Acta Scientiae et Intellectus, 1(4): 28-32.

14.      Ignat I, Volf I, Popa V. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chemistry, 126(4): 1821-1835.

15.      Wang, L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6): 300-312.

16.    Nor Halaliza A. and Zulkifly A. (2017). Microwave-assisted extraction of phenolic compound from pineapple skins: The optimum operating condition and comparison with Soxhlet extraction. Malaysian Journal of Analytical Sciences, 21(3): 690-699.

17.      Kan, X., Zhang, J., Tong, Y. W. and Wang C. H. (2018). Overall evaluation of microwave-assisted alkali pretreatment for enhancement of biomethane production from brewers’ spent grain. Energy Conversion and Management, 158: 315-326.

18.      Eskilsson C. and Björklund E. (2001). Analytical-scale microwave-assisted extraction. Journal of Chromatography, 902: 227-250.

19.      Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nystrom, A., Pettersen, J. and Bergman, R. (1998). Experimental design and optimization. Chemometrics and Intelligent Laboratory Systems, 42(1): 3-40.

20.      Koffi, E., Sea T., Dodehe, Y., and Soro, S. (2010). Effect of solvent type on extraction of polyphenols from twenty-three ivorian plants. Journal Animal Plant Sciences, 5: 550-558.

21.      Randika, S., Nilushi, N., Pathmalal, M., Lanka, U., Dhanushka, U. and Nilmini, L. (2021). Effects of extraction solvents on phytochemical screening, cytotoxicity and anti-obesity activities of selected Sri Lankan medicinal plants. Pharmacognosy Research, 13(4): 246-256.

22.      Pan, X, Niu, G. and Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification, 42(2): 129-133.

23.    Rezaei, S., Rezaei, K., Haghighi, M. and Labbafi M. (2013). Solvent and solvent to sample ratio as main parameters in the microwave-assisted extraction of polyphenolic compounds from apple pomace. Food Science and Biotechnology, 22(5): 1-6.

24.      Zhang, S. Q., Bi, H. M. and Liu, C. J. (2007). Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure. Separation and Purification Technology, 57(2): 277-282.

25.      Trease, G. E. and Evans, W. C. (2002). A text book of pharmacognosy, 15th edition. London: Academic press.

26.      Magoling, B. J. A. and Macalalad, A. A. (2017). Optimization and response surface modelling of activated carbon production from mahogany fruit husk for removal of chromium (VI) from aqueous solution. BioResources, 12: 3001-3016.

27.      Kaderides, K., Papaoikonomou, L., Serafim, M. and Goula, A. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering & Processing: Process Intensification, 137: 1-11.

28.      Shang, A., Luo, M., Gan, R. Y., Xu, X., Xia, Y., Liu, Y. and Li, H. B. (2020). Effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.). Antioxidants, 9(8): 678.

29.      Peng, F., Cheng, C., Xie, Y. and Yang, Y. (2015). Optimization of microwave-assisted extraction of phenolic compounds from “Anli” pear (Pyrus ussuriensis Maxim). Food Science and Technology Research, 21(3): 463-471.

30.      Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z. and Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104: 17-25.

31.    Akhtar, I., Javad, S., Yousaf, Z., Igbal, S. and Jabeen, K. (2019). Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pakistan Journal Pharmaceutical Sciences, 32(1): 223-230.

32.      Mandal, V., Mohan, Y. and Hemalatha, S. (2007). Microwave assisted extraction – an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1(1): 7-18.