Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1047 - 1069
RECENT DEVELOPMENT
ON THE SYNTHESIS OF THIOUREA DERIVATIVES AND EFFECT OF SUBSTITUENTS ON THE
ANTICANCER ACTIVITY: A SHORT REVIEW
(Perkembangan Terkini Sintesis
Sebatian Terbitan Tiourea dan Kesan Kumpulan Penukargantian Terhadap Aktiviti
Antikanser: Ulasan Ringkas)
Norashikin
Roslan1,5, Noraslinda Muhamad Bunnori2,5, Khairul
Bariyyah Abdul Halim2,5, Karimah Kassim3,
Mohd
Fadhlizil Fasihi Mohd Aluwi4, Nurziana Ngah1,6*
1Department of Chemistry,
Kulliyah of
Science, International Islamic University Malaysia, Kuantan Campus,
Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
2Department of Biotechnology,
Kulliyah of
Science, International Islamic University Malaysia, Kuantan Campus,
Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
3Institute of Sciences,
Universiti
Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia
4Faculty of Industrial Sciences and
Technology,
Universiti
Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
5Research Unit for Bioinoformatic
& Computional (RUBIC),
Kulliyyah of
Science, International Islamic University Malaysia, Kuantan Campus,
Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
6 Synthetic and Functional Material
Research Group,
Department of
Chemistry,
Kulliyyah of
Science, International Islamic University Malaysia, Kuantan Campus,
Bandar Indera
Mahkota, 25200 Kuantan, Pahang, Malaysia
*Corresponding author:
nurziana@iium.edu.my
Received: 1 June 2022; Accepted: 18
August 2022; Published: 30 October 2022
Abstract
Thiourea is a carbon,
hydrogen, sulphur, and nitrogen-based organic molecule. The thiourea group has
been improved by replacing various substituents for its hydrogen atoms at the
nitrogen terminal, resulting in a wide range of biological activities,
especially on anticancer properties. Despite the fact that thiourea derivatives
have remarkable anticancer potential, finding a novel anticancer agent that is
both safe and selective remains a challenge. This paper summarizes recent
research on thiourea compounds that can be used to treat malignant cell lines.
Several synthesis methods and the effects of substituents as well as their
anticancer therapeutic potential in a variety of healthy and malignant cell
lines are discussed. As a result, it is envisaged that this review will guide
the design and synthesis of new thiourea derivatives in the future for the
development of highly effective and selective anticancer drugs.
Keywords: thiourea
derivatives, synthesis method, anticancer activity, substituents
Abstrak
Tiourea merupakan sebatian organik
yang mempunyai atom karbon, hidrogen, sulfur dan nitrogen. Modifikasi sebatian
organik tiourea ini dengan menggantikan atom hidrogen pada terminal nitrogen
dengan pelbagai kumpulan penukargantian yang terpilih telah menghasilkan
sebatian yang mempunyai pelbagai aktiviti biologi. Salah satu daripada aktiviti
biologinya adalah sebagai agen antikanser. Meskipun sebatian terbitan tiourea
ini dilaporkan mempunyai aktiviti antikanser yang signifikan, namun masih
terdapat cabaran untuk mencari sebatian terbitan tiourea baru yang selamat dan
bersifat selektif. Kertas ini meringkaskan kajian terkini mengenai sebatian
terbitan tiourea yang boleh diaplikasi untuk kajian merawat sel kanser.
Pelbagai kaedah sintesis, kesan kumpulan penukargantian serta potensi sebatian
ke atas pelbagai jenis sel termasuk sel sihat dan malignan telah dibincangkan.
Ulasan ringkas ini dapat memberi panduan untuk meningkatkan kemajuan dalam
mencipta dan mensintesis sebatian antikanser baru yang berkesan dan selektif
berasaskan tiourea.
Kata kunci: terbitan tiourea, kaedah sintesis, aktiviti antikanser, kesan
kumpulan penukargantian
References
1. Sung, H., Ferlay, J., Siegel, R. L.,
Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021). Global Cancer
Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36
Cancers in 185 Aountries. CA: A cancer Journal for Clinicians, 71(3):
209-249.
2. Mansoori,
B., Mohammadi, A., Davudian, S., Shirjang, S. and Baradaran, B. (2017). The
different mechanisms of cancer drug resistance: A brief review. Advanced
Pharmaceutical Bulletin, 7(3): 339.
3. Levitzki,
A. and Klein, S. (2019). My journey from tyrosine phosphorylation inhibitors to
targeted immune therapy as strategies to combat cancer. Proceedings of
the National Academy of Sciences, 116(24): 11579-11586.
4. Kirishnamaline,
G., Magdaline, J. D., Chithambarathanu, T., Aruldhas, D. and Anuf, A. R.
(2021). Theoretical investigation of structure, anticancer activity and
molecular docking of thiourea derivatives. Journal of Molecular
Structure, 1225: 129118.
5. Eshkil,
F., Eshghi, H., Saljooghi, A., Bakavoli, M. and Rahimizadeh, M. (2017).
Benzothiazole thiourea derivatives as anticancer agents: design, synthesis, and
biological screening. Russian Journal of Bioorganic Chemistry, 43(5):
576-582.
6. Ghorab,
M., SA El-Gaby, M., S Alsaid, M., AMM Elshaier, Y., M Soliman, A., F
El-Senduny, F., and YA Sherif, A. (2017). Novel thiourea derivatives bearing
sulfonamide moiety as anticancer agents through COX-2 inhibition. Anti-Cancer
Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer
Agents), 17(10): 1411-1425.
7. Guria,
T., Roy, P. and Maity, T. K. (2018). Synthesis, pharmacological evaluation and
ligand-protein interaction study of hybrid urea and thiourea derivatives as
antihyperglycemic agents. International Research Journal of Pharmacy,
9(5): 36-44.
8. Türk,
S., Tok, F., Erdoğan, Ö., Çevik, Ö., Tok, T. T.,
Koçyiğit-Kaymakçıoğlu, B. and Karakuş, S. (2020).
Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea
derivatives from gabapentin. Phosphorus, Sulfur, and Silicon and the
Related Elements, 196(4): 382-388.
9. Ghorab,
M. M., Alsaid, M. S., Al-Dosary, M. S., Nissan, Y. M. and Attia, S. M. (2016).
Design, synthesis and anticancer activity of some novel
thioureido-benzenesulfonamides incorporated biologically active moieties. Chemistry
Central Journal, 10(1): 1-13.
10. Kumar, V. and
Chimni, S. S. (2015). Recent developments on
thiourea based anticancer chemotherapeutics. Anticancer Agents in
Medicinal Chemistry, 15(2): 163-175.
11. Sethy,
C. and Kundu, C. N. (2021). 5-Fluorouracil (5-FU) resistance and the new
strategy to enhance the sensitivity against cancer: Implication of DNA repair
inhibition. Biomedicine & Pharmacotherapy, 137: 111285.
12. Strzyga-Łach,
P., Chrzanowska, A., Podsadni, K. and Bielenica, A. (2021). Investigation of
the Mechanisms of cytotoxic activity of 1, 3-disubstituted thiourea
derivatives. Pharmaceuticals, 14(11): 1097.
13. Lee,
B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., ... and Kim, D. H.
(2019). Metformin and Tenovin‐6 synergistically induce apoptosis through
LKB1‐independent SIRT1 down‐regulation in non‐small cell lung
cancer cells. Journal of Cellular and Molecular Medicine, 23(4):
2872-2889.
14. Shakeel,
A., Altaf, A. A., Qureshi, A. M. and Badshah, A. (2016). Thiourea derivatives
in drug design and medicinal chemistry: a short review. Journal Drug
Design Medicine Chemistry, 2(1): 10.
15. Widiandani,
T. and Hardjono, S. (2017). Docking and cytotoxicity test on human breast
cancer cell line (T47d) of n-(allylcarbamothioyl)-3-chlorobenzamide and n-(allylcarbamothioyl)-3,
4-dichlorobenzamide. Research Journal of Pharmaceutical, Biological and
Chemical Sciences, 8(2): 1909-1914.
16. Viswas,
R. S., Pundir, S. and Lee, H. (2019). Design and synthesis of 4-piperazinyl
quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid
pharmacophore approach. Journal of Enzyme Inhibition and Medicinal
Chemistry, 34(1): 620-630.
17. Liu,
J., Liao, P., Hu, J., Zhu, H., Wang, Y., Li, Y., ... and He, B. (2017).
Synthesis and antitumor activities of chiral dipeptide thioureas containing an
alpha-aminophosphonate moiety. Molecules, 22(2): 238.
18. Mistry,
B. M., Shin, H. S., Pandurangan, M. and Patel, R. V. (2017). Synthesis of acyl
thiourea derivatives of 7-trifluoromethyl-2-pyridylquinazolin-4-(3h)-one
as anticancer agents. Journal of Chemical Research, 41(10):
598-602.
19. Kulabaş,
N., Özakpınar, Ö. B., Özsavcı, D., Leyssen, P., Neyts, J. and
Küçükgüzel, İ. (2017). Synthesis, characterization and biological
evaluation of thioureas, acylthioureas and 4-thiazolidinones as anticancer and
antiviral agents. Marmara Pharmaceutical Journal, 21(2):
371-384.
20. Ghorab,
M. M., Alsaid, M. S., El-Gaby, M. S., Elaasser, M. M. and Nissan, Y. M. (2017).
Antimicrobial and anticancer activity of some novel fluorinated thiourea
derivatives carrying sulfonamide moieties: synthesis, biological evaluation and
molecular docking. Chemistry Central Journal, 11(1): 1-14.
21. Ronchetti,
R., Moroni, G., Carotti, A., Gioiello, A. and Camaioni, E. (2021). Recent
advances in urea-and thiourea-containing compounds: Focus on innovative
approaches in medicinal chemistry and organic synthesis. RSC Medicinal
Chemistry,
12(7): 1046-1064.
22. Francioso,
A., Baseggio Conrado, A., Mosca, L. and Fontana, M. (2020). Chemistry and
biochemistry of sulfur natural compounds: Key intermediates of metabolism and
redox biology. Oxidative Medicine and Cellular Longevity, 2020:
8294158
23. Olson,
K. R. (2020). Are reactive sulfur species the new reactive oxygen species? Antioxidants
& Redox Signaling, 33(16): 1125-1142.
24. Ghosh,
A. K. and Brindisi, M. (2019). Urea derivatives in modern drug discovery and
medicinal chemistry. Journal of Medicinal Chemistry, 63(6):
2751-2788.
25. Vologzhanina,
A. V., Ushakov, I. E. and Korlyukov, A. A. (2020). Intermolecular interactions
in crystal structures of imatinib-containing compounds. International
Journal of Molecular Sciences, 21(23): 8970.
26. Abd
Halim, A. N. and Ngaini, Z. (2016). Synthesis and bacteriostatic activities of
bis(thiourea) derivatives with variable chain length. Journal of
Chemistry, 2016: 2739832
27. Shankaraiah,
N., Kumar, N. P., Amula, S. B., Nekkanti, S., Jeengar, M. K., Naidu, V. G. M.,
... and Kamal, A. (2015). One-pot synthesis of podophyllotoxinthiourea
congeners by employing NH2SO3H/NaI: Anticancer activity,
DNA topoisomerase-II inhibition, and Apoptosis inducing agents. Bioorganic
& Medicinal Chemistry Letters, 25(19): 4239-4244.
28. Cheng,
W. H., Shang, H., Niu, C., Zhang, Z. H., Zhang, L. M., Chen, H. and Zou, Z. M.
(2015). Synthesis and evaluation of new podophyllotoxin derivatives with in-vitro
anticancer activity. Molecules, 20(7): 12266-12279.
29. Miftah, A. M.
and Tjahjono, D. H. (2015). Synthesis and in-vitro
cytotoxicity of 1-benzoyl-3-methyl thiourea derivatives. Procedia
Chemistry, 17: 157-161.
30. Nasyanka,
A. L. (2017). Docking, synthesis, and cytotoxic activity of n-4-methoxybenzoyl-n-(4-fluorophenyl)thiourea
on HeLa cell line. Thai Journal of Pharmaceutical Sciences, 41(3): 99-102.
31. Casa,
S. and Henary, M. (2021). Synthesis and applications of selected
fluorine-containing fluorophores. Molecules, 26(4): 1160.
32. Widiandani,
T. and Meiyanto, E. (2018). Docking and antiproliferative effect of 4-tert-butylbenzoyl-3-allylthiourea
on MCF-7 breast cancer cells with/without HER-2 overexpression. In Proceedings
of International Conference on Applied Pharmaceutical Sciences, 2018:
3461444.
33. Ruswanto,
R., Mardianingrum, R., Lestari, T., Nofianti, T. and Siswandono, S. (2018).
1-(4-Hexylbenzoyl)-3-methylthiourea. Molbank, (3): 2-6.
34. Jain,
S., Chandra, V., Jain, P. K., Pathak, K., Pathak, D. and Vaidya, A. (2019).
Comprehensive review on current developments of quinoline-based anticancer
agents. Arabian Journal of Chemistry, 12(8): 4920-4946.
35. Martins,
P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V.
and Fernandes, A. R. (2015). Heterocyclic Anticancer Compounds: Recent Advances
and the Paradigm Shift Towards the Use of Nanomedicines Tool Box. Molecules, 20(9):
16852-16891.
36. Shekarkhand,
M., Zare, K., Monajjemi, M., Tazikeh-Lemeski, E. and Sayadian, M. (2022).
Computational study of heterocyclic anticancer compounds through NBO
method. Nexo Revista Científica, 35(01): 367-381.
37. Nielsen,
A. L., Rajabi, N., Kudo, N., Lundĝ, K., Moreno-Yruela, C., Bĉk, M., ... and
Olsen, C. A. (2021). Mechanism-based Inhibitors of SIRT2: Structureactivity
relationship, X-ray structures, target engagement, regulation of α-tubulin
acetylation and inhibition of breast cancer cell migration. RSC
Chemical Biology, 2(2): 612-626.
38. Farooqi,
A. S., Hong, J. Y., Cao, J., Lu, X., Price, I. R., Zhao, Q., ... and Lin, H.
(2019). Novel Lysine-based thioureas as mechanism-based inhibitors of Sirtuin 2
(SIRT2) With anticancer activity in a colorectal cancer murine model. Journal
of Medicinal Chemistry, 62(8): 4131-4141.
39. Al-Amily,
D. H. and Hassan Mohammed, M. (2019). Design, Synthesis, and docking study of
acyl thiourea derivatives as possible histone deacetylase inhibitors with a
novel zinc binding group. Scientia Pharmaceutica, 87(4): 28.
40. Ho,
T. C., Chan, A. H., and Ganesan, A. (2020). Thirty Years of HDAC Inhibitors:
2020 Insight and Hindsight. Journal of Medicinal Chemistry, 63(21):
12460-12484.
41. Fatima,
T., Haque, R. A., Razali, M. R., Ahmad, A., Asif, M., Khadeer Ahamed, M. B. and
Abdul Majid, A. M. S. (2017). Effect of lipophilicity of wingtip groups on the
anticancer potential of mono n‐heterocyclic carbene silver (I)
complexes: Synthesis, crystal structures and in-vitro anticancer
study. Applied Organometallic Chemistry, 31(10): e3735
42. Kesuma,
D., Nasyanka, A. L., Rudyanto, M., Purwanto, B. T. and Sumartha, I. G. A.
(2020). A prospective modification structure: The effect of lipophilic and
electronic properties of n-(phenylcarbamothyoil) benzamide derivatives
on cytotoxic activity by in silico and in vitro assay with T47d cells. Rasayan
Journal of Chemistry, 13(3): 1914-1918.
43. Kesuma,
D., Purwanto, B. T. and Rudyanto, M. (2019). Synthesis and anticancer
evaluation of n-benzoyl-n-phenyltiourea derivatives againts
human breast cancer cells (T47D). Journal of Chinese Pharmaceutical
Sciences, 29(2): 123-129.
44. Bai,
W., Ji, J., Huang, Q. and Wei, W. (2020). Synthesis and evaluation of new
thiourea derivatives as antitumor and antiangiogenic agents. Tetrahedron
Letters, 61(40): 152366.
45. Alimohammadi,
A., Mostafavi, H. and Mahdavi, M. (2020). Thiourea derivatives based on the dapsone‐naphthoquinone
hybrid as anticancer and antimicrobial agents: In-vitro screening and
molecular docking studies. ChemistrySelect, 5(2):
847-852.
46. Siddig,
L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. and Wadaan, M. A. (2021).
Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer
agents. Open Chemistry, 19(1): 1062-1073.
47. Kirtishanti,
A., Siswandono, S. and Sudiana, I. K. (2021). Synthesis and cytotoxic activity
of n-(4-bromo)-benzoyl-n-phenylthiourea and 4-(tert-butyl)-n-benzoylurea
on primary cells of HER2-positive breast cancer. Research Journal of
Pharmacy and Technology, 14(3): 1195-1200.
48. Parmar, D.
R., Soni, J. Y., Guduru, R., Rayani, R. H., Kusurkar, R. V., Vala, A. G., ... and
Battula, S. (2021). Discovery of new anticancer thiourea-azetidine hybrids:
Design, synthesis, in-vitro antiproliferative, SAR, In-silico
molecular docking against VEGFR-2, ADMET, Toxicity, and DFT studies. Bioorganic
Chemistry, 115: 105206.
49. Qaiser,
S., Mubarak, M. S., Ashraf, S., Saleem, M., Ul-Haq, Z., Safdar, M., ... and
Maalik, A. (2021). Benzilydene and thiourea derivatives as new classes of
carbonic anhydrase inhibitors: An In-vitro and molecular docking
study. Medicinal Chemistry Research, 30(3): 552-563.
50. Khan,
A., Khan, M., Halim, S. A., Khan, Z. A., Shafiq, Z. and Al-Harrasi, A. (2020).
Quinazolinones as competitive inhibitors of carbonic anhydrase-ii (human and
bovine): Synthesis, in-vitro, in-silico, selectivity, and kinetics studies. Frontiers
in Chemistry, 2020: 1113.