Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1047 - 1069

 

RECENT DEVELOPMENT ON THE SYNTHESIS OF THIOUREA DERIVATIVES AND EFFECT OF SUBSTITUENTS ON THE ANTICANCER ACTIVITY: A SHORT REVIEW

 

(Perkembangan Terkini Sintesis Sebatian Terbitan Tiourea dan Kesan Kumpulan Penukargantian Terhadap Aktiviti Antikanser: Ulasan Ringkas)

 

Norashikin Roslan1,5, Noraslinda Muhamad Bunnori2,5, Khairul Bariyyah Abdul Halim2,5, Karimah Kassim3,

Mohd Fadhlizil Fasihi Mohd Aluwi4, Nurziana Ngah1,6*

 

1Department of Chemistry,

Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus,

Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2Department of Biotechnology,

Kulliyah of Science, International Islamic University Malaysia, Kuantan Campus,

Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

3Institute of Sciences,

Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia

4Faculty of Industrial Sciences and Technology,

Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia

5Research Unit for Bioinoformatic & Computional (RUBIC),

Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus,

Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

6 Synthetic and Functional Material Research Group,

Department of Chemistry,

Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus,

Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

 

*Corresponding author: nurziana@iium.edu.my

 

 

Received: 1 June 2022; Accepted: 18 August 2022; Published:  30 October 2022

 

 

Abstract

Thiourea is a carbon, hydrogen, sulphur, and nitrogen-based organic molecule. The thiourea group has been improved by replacing various substituents for its hydrogen atoms at the nitrogen terminal, resulting in a wide range of biological activities, especially on anticancer properties. Despite the fact that thiourea derivatives have remarkable anticancer potential, finding a novel anticancer agent that is both safe and selective remains a challenge. This paper summarizes recent research on thiourea compounds that can be used to treat malignant cell lines. Several synthesis methods and the effects of substituents as well as their anticancer therapeutic potential in a variety of healthy and malignant cell lines are discussed. As a result, it is envisaged that this review will guide the design and synthesis of new thiourea derivatives in the future for the development of highly effective and selective anticancer drugs.

 

Keywords: thiourea derivatives, synthesis method, anticancer activity, substituents

 

Abstrak

Tiourea merupakan sebatian organik yang mempunyai atom karbon, hidrogen, sulfur dan nitrogen. Modifikasi sebatian organik tiourea ini dengan menggantikan atom hidrogen pada terminal nitrogen dengan pelbagai kumpulan penukargantian yang terpilih telah menghasilkan sebatian yang mempunyai pelbagai aktiviti biologi. Salah satu daripada aktiviti biologinya adalah sebagai agen antikanser. Meskipun sebatian terbitan tiourea ini dilaporkan mempunyai aktiviti antikanser yang signifikan, namun masih terdapat cabaran untuk mencari sebatian terbitan tiourea baru yang selamat dan bersifat selektif. Kertas ini meringkaskan kajian terkini mengenai sebatian terbitan tiourea yang boleh diaplikasi untuk kajian merawat sel kanser. Pelbagai kaedah sintesis, kesan kumpulan penukargantian serta potensi sebatian ke atas pelbagai jenis sel termasuk sel sihat dan malignan telah dibincangkan. Ulasan ringkas ini dapat memberi panduan untuk meningkatkan kemajuan dalam mencipta dan mensintesis sebatian antikanser baru yang berkesan dan selektif berasaskan tiourea. 

 

Kata kunci: terbitan tiourea, kaedah sintesis, aktiviti antikanser, kesan kumpulan penukargantian

 

References

1.       Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Aountries. CA: A cancer Journal for Clinicians, 71(3): 209-249.

2.         Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. and Baradaran, B. (2017). The different mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin, 7(3): 339.

3.         Levitzki, A. and Klein, S. (2019). My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer. Proceedings of the National Academy of Sciences, 116(24): 11579-11586.

4.      Kirishnamaline, G., Magdaline, J. D., Chithambarathanu, T., Aruldhas, D. and Anuf, A. R. (2021). Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. Journal of Molecular Structure, 1225: 129118.

5.         Eshkil, F., Eshghi, H., Saljooghi, A., Bakavoli, M. and Rahimizadeh, M. (2017). Benzothiazole thiourea derivatives as anticancer agents: design, synthesis, and biological screening. Russian Journal of Bioorganic Chemistry, 43(5): 576-582.

6.         Ghorab, M., SA El-Gaby, M., S Alsaid, M., AMM Elshaier, Y., M Soliman, A., F El-Senduny, F., and YA Sherif, A. (2017). Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 17(10): 1411-1425.

7.       Guria, T., Roy, P. and Maity, T. K. (2018). Synthesis, pharmacological evaluation and ligand-protein interaction study of hybrid urea and thiourea derivatives as antihyperglycemic agents. International Research Journal of Pharmacy, 9(5): 36-44.

8.         Türk, S., Tok, F., Erdoğan, Ö., Çevik, Ö., Tok, T. T., Koçyiğit-Kaymakçıoğlu, B. and Karakuş, S. (2020). Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea derivatives from gabapentin. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(4): 382-388.

9.         Ghorab, M. M., Alsaid, M. S., Al-Dosary, M. S., Nissan, Y. M. and Attia, S. M. (2016). Design, synthesis and anticancer activity of some novel thioureido-benzenesulfonamides incorporated biologically active moieties. Chemistry Central Journal, 10(1): 1-13.

10.       Kumar, V. and Chimni, S. S. (2015). Recent developments on thiourea based anticancer chemotherapeutics. Anticancer Agents in Medicinal Chemistry, 15(2): 163-175.

11.       Sethy, C. and Kundu, C. N. (2021). 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomedicine & Pharmacotherapy, 137: 111285.

12.       Strzyga-Łach, P., Chrzanowska, A., Podsadni, K. and Bielenica, A. (2021). Investigation of the Mechanisms of cytotoxic activity of 1, 3-disubstituted thiourea derivatives. Pharmaceuticals, 14(11): 1097.

13.       Lee, B. B., Kim, Y., Kim, D., Cho, E. Y., Han, J., Kim, H. K., ... and Kim, D. H. (2019). Metformin and Tenovin‐6 synergistically induce apoptosis through LKB1‐independent SIRT1 down‐regulation in non‐small cell lung cancer cells. Journal of Cellular and Molecular Medicine23(4): 2872-2889.

14.       Shakeel, A., Altaf, A. A., Qureshi, A. M. and Badshah, A. (2016). Thiourea derivatives in drug design and medicinal chemistry: a short review. Journal Drug Design Medicine Chemistry, 2(1): 10.

15.       Widiandani, T. and Hardjono, S. (2017). Docking and cytotoxicity test on human breast cancer cell line (T47d) of n-(allylcarbamothioyl)-3-chlorobenzamide and n-(allylcarbamothioyl)-3, 4-dichlorobenzamide. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(2): 1909-1914.

16.       Viswas, R. S., Pundir, S. and Lee, H. (2019). Design and synthesis of 4-piperazinyl quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid pharmacophore approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1): 620-630.

17.       Liu, J., Liao, P., Hu, J., Zhu, H., Wang, Y., Li, Y., ... and He, B. (2017). Synthesis and antitumor activities of chiral dipeptide thioureas containing an alpha-aminophosphonate moiety. Molecules, 22(2): 238.

18.       Mistry, B. M., Shin, H. S., Pandurangan, M. and Patel, R. V. (2017). Synthesis of acyl thiourea derivatives of 7-trifluoromethyl-2-pyridylquinazolin-4-(3h)-one as anticancer agents. Journal of Chemical Research, 41(10): 598-602.

19.       Kulabaş, N., Özakpınar, Ö. B., Özsavcı, D., Leyssen, P., Neyts, J. and Küçükgüzel, İ. (2017). Synthesis, characterization and biological evaluation of thioureas, acylthioureas and 4-thiazolidinones as anticancer and antiviral agents. Marmara Pharmaceutical Journal, 21(2): 371-384.

20.       Ghorab, M. M., Alsaid, M. S., El-Gaby, M. S., Elaasser, M. M. and Nissan, Y. M. (2017). Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking. Chemistry Central Journal, 11(1): 1-14.

21.       Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. and Camaioni, E. (2021). Recent advances in urea-and thiourea-containing compounds: Focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 12(7): 1046-1064.

22.       Francioso, A., Baseggio Conrado, A., Mosca, L. and Fontana, M. (2020). Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxidative Medicine and Cellular Longevity, 2020: 8294158

23.       Olson, K. R. (2020). Are reactive sulfur species the new reactive oxygen species? Antioxidants & Redox Signaling, 33(16): 1125-1142.

24.       Ghosh, A. K. and Brindisi, M. (2019). Urea derivatives in modern drug discovery and medicinal chemistry. Journal of Medicinal Chemistry, 63(6): 2751-2788.

25.       Vologzhanina, A. V., Ushakov, I. E. and Korlyukov, A. A. (2020). Intermolecular interactions in crystal structures of imatinib-containing compounds. International Journal of Molecular Sciences, 21(23): 8970.

26.       Abd Halim, A. N. and Ngaini, Z. (2016). Synthesis and bacteriostatic activities of bis(thiourea) derivatives with variable chain length. Journal of Chemistry, 2016: 2739832


27.       Shankaraiah, N., Kumar, N. P., Amula, S. B., Nekkanti, S., Jeengar, M. K., Naidu, V. G. M., ... and Kamal, A. (2015). One-pot synthesis of podophyllotoxin–thiourea congeners by employing NH2SO3H/NaI: Anticancer activity, DNA topoisomerase-II inhibition, and Apoptosis inducing agents. Bioorganic & Medicinal Chemistry Letters, 25(19): 4239-4244.

28.       Cheng, W. H., Shang, H., Niu, C., Zhang, Z. H., Zhang, L. M., Chen, H. and Zou, Z. M. (2015). Synthesis and evaluation of new podophyllotoxin derivatives with in-vitro anticancer activity. Molecules, 20(7): 12266-12279.

29.       Miftah, A. M. and Tjahjono, D. H. (2015). Synthesis and in-vitro cytotoxicity of 1-benzoyl-3-methyl thiourea derivatives. Procedia Chemistry, 17: 157-161.

30.       Nasyanka, A. L. (2017). Docking, synthesis, and cytotoxic activity of n-4-methoxybenzoyl--(4-fluorophenyl)thiourea on HeLa cell line. Thai Journal of Pharmaceutical Sciences, 41(3): 99-102.

31.       Casa, S. and Henary, M. (2021). Synthesis and applications of selected fluorine-containing fluorophores. Molecules, 26(4): 1160.

32.       Widiandani, T. and Meiyanto, E. (2018). Docking and antiproliferative effect of 4-tert-butylbenzoyl-3-allylthiourea on MCF-7 breast cancer cells with/without HER-2 overexpression. In Proceedings of International Conference on Applied Pharmaceutical Sciences, 2018: 3461444.

33.       Ruswanto, R., Mardianingrum, R., Lestari, T., Nofianti, T. and Siswandono, S. (2018). 1-(4-Hexylbenzoyl)-3-methylthiourea. Molbank, (3): 2-6. 

34.       Jain, S., Chandra, V., Jain, P. K., Pathak, K., Pathak, D. and Vaidya, A. (2019). Comprehensive review on current developments of quinoline-based anticancer agents. Arabian Journal of Chemistry, 12(8): 4920-4946. 

35.       Martins, P., Jesus, J., Santos, S., Raposo, L. R., Roma-Rodrigues, C., Baptista, P. V. and Fernandes, A. R. (2015). Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift Towards the Use of Nanomedicine’s Tool Box. Molecules, 20(9): 16852-16891.

36.       Shekarkhand, M., Zare, K., Monajjemi, M., Tazikeh-Lemeski, E. and Sayadian, M. (2022). Computational study of heterocyclic anticancer compounds through NBO method. Nexo Revista Científica, 35(01): 367-381.

37.       Nielsen, A. L., Rajabi, N., Kudo, N., Lundĝ, K., Moreno-Yruela, C., Bĉk, M., ... and Olsen, C. A. (2021). Mechanism-based Inhibitors of SIRT2: Structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chemical Biology2(2): 612-626. 

38.       Farooqi, A. S., Hong, J. Y., Cao, J., Lu, X., Price, I. R., Zhao, Q., ... and Lin, H. (2019). Novel Lysine-based thioureas as mechanism-based inhibitors of Sirtuin 2 (SIRT2) With anticancer activity in a colorectal cancer murine model. Journal of Medicinal Chemistry, 62(8): 4131-4141.

39.       Al-Amily, D. H. and Hassan Mohammed, M. (2019). Design, Synthesis, and docking study of acyl thiourea derivatives as possible histone deacetylase inhibitors with a novel zinc binding group. Scientia Pharmaceutica, 87(4): 28.

40.       Ho, T. C., Chan, A. H., and Ganesan, A. (2020). Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of Medicinal Chemistry, 63(21): 12460-12484.

41.       Fatima, T., Haque, R. A., Razali, M. R., Ahmad, A., Asif, M., Khadeer Ahamed, M. B. and Abdul Majid, A. M. S. (2017). Effect of lipophilicity of wingtip groups on the anticancer potential of mono n‐heterocyclic carbene silver (I) complexes: Synthesis, crystal structures and in-vitro anticancer study. Applied Organometallic Chemistry, 31(10): e3735

42.       Kesuma, D., Nasyanka, A. L., Rudyanto, M., Purwanto, B. T. and Sumartha, I. G. A. (2020). A prospective modification structure: The effect of lipophilic and electronic properties of n-(phenylcarbamothyoil) benzamide derivatives on cytotoxic activity by in silico and in vitro assay with T47d cells. Rasayan Journal of Chemistry, 13(3): 1914-1918.

43.       Kesuma, D., Purwanto, B. T. and Rudyanto, M. (2019). Synthesis and anticancer evaluation of n-benzoyl--phenyltiourea derivatives againts human breast cancer cells (T47D). Journal of Chinese Pharmaceutical Sciences, 29(2): 123-129.

44.       Bai, W., Ji, J., Huang, Q. and Wei, W. (2020). Synthesis and evaluation of new thiourea derivatives as antitumor and antiangiogenic agents. Tetrahedron Letters, 61(40): 152366.

45.   Alimohammadi, A., Mostafavi, H. and Mahdavi, M. (2020). Thiourea derivatives based on the dapsone‐naphthoquinone hybrid as anticancer and antimicrobial agents: In-vitro screening and molecular docking studies. ChemistrySelect, 5(2): 847-852. 

46.       Siddig, L. A., Khasawneh, M. A., Samadi, A., Saadeh, H., Abutaha, N. and Wadaan, M. A. (2021). Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. Open Chemistry, 19(1): 1062-1073.

47.     Kirtishanti, A., Siswandono, S. and Sudiana, I. K. (2021). Synthesis and cytotoxic activity of n-(4-bromo)-benzoyl--phenylthiourea and 4-(tert-butyl)-n-benzoylurea on primary cells of HER2-positive breast cancer. Research Journal of Pharmacy and Technology, 14(3): 1195-1200.

48.    Parmar, D. R., Soni, J. Y., Guduru, R., Rayani, R. H., Kusurkar, R. V., Vala, A. G., ... and Battula, S. (2021). Discovery of new anticancer thiourea-azetidine hybrids: Design, synthesis, in-vitro antiproliferative, SAR, In-silico molecular docking against VEGFR-2, ADMET, Toxicity, and DFT studies. Bioorganic Chemistry, 115: 105206.

49.    Qaiser, S., Mubarak, M. S., Ashraf, S., Saleem, M., Ul-Haq, Z., Safdar, M., ... and Maalik, A. (2021). Benzilydene and thiourea derivatives as new classes of carbonic anhydrase inhibitors: An In-vitro and molecular docking study. Medicinal Chemistry Research, 30(3): 552-563.

50.    Khan, A., Khan, M., Halim, S. A., Khan, Z. A., Shafiq, Z. and Al-Harrasi, A. (2020). Quinazolinones as competitive inhibitors of carbonic anhydrase-ii (human and bovine): Synthesis, in-vitro, in-silico, selectivity, and kinetics studies. Frontiers in Chemistry, 2020: 1113.