Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 708 - 717

 

 

 

 

FORMULATION OF HIGH-QUALITY UV-CURABLE COATING CONTAINING RENEWABLE REACTIVE DILUENTS FOR WOOD PROTECTION

 

(Formulasi Salutan Awetan-UV Berkualiti Tinggi yang Mengandungi Diluen Reaktif  yang Boleh Diperbaharui untuk Perlindungan Kayu)

 

Noraini Abd Ghani1,2,3, Emilia Abdulmalek1,2, Rajni Hatti-Kaul4, Azren Aida Asmawi1,2, Mohd Basyaruddin Abdul Rahman1,2*

 

1Integrated Chemical BioPhysics Research, Faculty of Science

2Department of Chemistry, Faculty of Science

 Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology,

Universiti Teknologi PETRONAS, 32610, Perak, Malaysia

4Department of Biotechnology, Center for Chemistry and Chemical Engineering,

Lund University, P.O. Box 124, SE-221 00 Lund, Sweden

 

*Corresponding author: basya@upm.edu.my

 

 

Received: 29 November 2021; Accepted: 23 April 2022; Published:  25 August 2022

 

 

Abstract

Fine quality coating materials for a variety of surfaces using environmentally friendly substrates are continuously in demand. A large proportion of acrylate derivatives, which are toxic and hazardous, were found in most of the coating formulations. Many efforts have been done to replace acrylate derivatives with other materials derived from renewable resources. In this work, several formulations of wood coating containing different composition of epoxy acrylate and enzymatically synthesized epoxide from soybean oil or wax esters mixture of dioleyl adipate and 1,5-pentanediol diricinoleate were prepared. The formulations were subjected to performance evaluations including gel content, pendulum hardness, and surface test. Formulation 1 containing 85% epoxy acrylate and 15% epoxidation from soybean oil exhibited the highest gel content (79.5%), pendulum hardness (61.02%) and surface resistance to different types of liquid. Increase in surface resistance was observed using a formulation containing 85% epoxy acrylate and a mixture of 1,5-pentanediol diricinoleate and dioleyl adipate (1:1, w/w; 15%). Therefore, these reduced acrylate formulations showed good potential in the development of high-quality UV-curable wood coating.

 

Keywords:  coating, acrylate, epoxide, ester, ricinoleate

 

Abstrak

Bahan salutan yang berkualiti untuk pelbagai permukaan menggunakan substrat mesra alam sentiasa mendapat permintaan. Sebilangan besar derivatif akrilat, yang beracun dan berbahaya, ditemui dalam kebanyakan rumusan salutan. Pelbagai usaha telah dilakukan untuk menggantikan derivatif akrilat dengan bahan lain yang diperoleh daripada sumber yang boleh diperbaharui. Dalam kajian ini, beberapa formulasi salutan kayu yang mengandungi komposisi epoksi akrilat dan epoksida yang disintesis secara enzimatik daripada minyak kacang soya atau campuran ester lilin dioleil adipate dan 1,5-pentanediol dirisinoleate yang berbeza telah disediakan. Formulasi ini tertakluk kepada penilaian prestasi termasuk kandungan gel, kekerasan pendulum, dan ujian permukaan. Formulasi 1 yang mengandungi 85% epoksi akrilik dan 15% epoksida dari minyak kacang soya menunjukan kandungan gel (79.5%), kekerasan pendulum (61.02%) dan rintangan permukaan terhadap pelbagai jenis cecair yang tertinggi. Selain itu, peningkatan terhadap rintangan permukaan diperhatikan menggunakan formulasi yang mengandungi 85% epoksi akrilik dan campuran dioleil adipate dan 1,5-pentanediol dirisinoleate (1:1, w/w; 15%). Oleh itu, formulasi akrilat yang dikurangkan ini menunjukan potensi yang baik dalam pembangunan salutan kayu awetan-UV yang berkualiti tinggi.

 

Kata kunci:  salutan, akrilat, epoksida, ester, risinoleate

 


Graphical Abstract

 

 

 

References

1.      Andrady, A. L., Pandey, K. K. and Heikkilä, A. M. (2019). Interactive effects of solar UV radiation and climate change on material damage. Photochemical and Photobiological Sciences, 18(3): 804-825.

2.      Paquet, C., Schmitt, T., Klemberg-Sapieha, J. E., Morin, J.-F. and Landry, V., (2020). Self-healing UV curable acrylate coatings for wood finishing system, part 1: Impact of the formulation on self-healing efficiency. Coatings, 10(8): 770.

3.      Teacǎ, C. A., Roşu, D., Bodîrlǎu, R. and Roşu, L. (2013). Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements-a brief review, BioResources, 8(1): 1478-1507.

4.      Ulker, O. C., Ulker, O. and Hiziroglu, S. (2021). Volatile organic compounds (VOCs) emitted from coated furniture units. Coatings,11(7): 806.

5.      Suriano, R., Ciapponi, R., Griffini, G., Levi, M. and Turri, S. (2017). Fluorinated zirconia-based sol-gel hybrid coatings on polycarbonate with high durability and improved scratch resistance. Surface Coatings Technology, 311: 80-89.

6.      Teaca, C. A., Tanasa, F. and Zanoaga, M. (2018). Multi-component polymer systems comprising wood as bio-based component and thermoplastic polymer matrices – an overview, BioResources, 13(2): 4728-4769.

7.      Hang, Z., Yu, H., Lu, Y., Huai, X. and Luo, L. (2020). Effect of graphene carbon nitride on ultraviolet-curing coatings. Materials, 13(1): 153.

8.      Pezzana, L., Malmström, E., Johansson, M. and Sangermano, M. (2021). UV-curable bio-based polymers derived from industrial pulp and paper processes. Polymers, 13(9): 1530.

9.      Rosu, D., Bodîrləu, R., Teacə, C. A., Rosu, L. and Varganici, C. D. (2016). Epoxy and succinic anhydride functionalized soybean oil for wood protection against UV light action. Journal Cleaner Production, 112: 1175-1183.

10.   LoPachin, R. M. and Gavin, T. (2014). Molecular mechanisms of aldehyde toxicity: a chemical perspective, Chemical Research Toxicology, 27(7): 1081-1091.

11.   Gan, Y. and Jiang, X. (2014). Chapter 1: Photo-cured materials from vegetable oils, in green materials from plant oils. Royal Society of Chemistry, pp. 1–27.

12.   Xia, C., Wang, L., Dong, Y., Zhang, S., Shi, S. Q., Cai, L. and Li, J. (2015). Soy protein isolate-based films cross-linked by epoxidized soybean oil. RSC Advances, 5(101): 82765-82771.

13.   Wu, Q., Hu, Y., Tang, J., Zhang, J., Wang, C., Shang, Q., Feng, G., Liu, C., Zhou, Y. and Lei, W. (2018). High-performance soybean-oil-based epoxy acrylate resins: “Green” synthesis and application in UV-curable coatings. ACS Sustainable Chemical Engineering, 6(7): 8340-8349.

14.   Demengeot, E.-A.-C., Baliutaviciene, I., Ostrauskaite, J., Augulis, L., Grazuleviciene, V., Rageliene, L., and Grazulevicius, J. V. (2010). Crosslinking of epoxidized natural oils with diepoxy reactive diluents. Journal Applied Polymer Sciences, 115(4): 2028-2038.

15.   Abdul Rahman, M. B., Zaidan, U. H., Basri, M., Hussein, M. Z., Rahman, R. N. Z. R. A. and Salleh, A. B. (2008). Enzymatic synthesis of methyl adipate ester using lipase from Candida rugosa immobilised on Mg, Zn and Ni of layered double hydroxides (LDHs), Journal Molecular Catalyst B Enzyme, 50(1): 33-39.

16.   Chaibakhsh, N., Abdul Rahman, M. B., Abd-Aziz, S., Basri, M., Salleh, A. B. and Rahman, R. N. Z. R. A. (2009). Optimized lipase-catalyzed synthesis of adipate ester in a solvent-free system, Journal Industrial Microbiology Biotechnology, 36(9): 1149-1155.

17.   Abdul Rahman, M. B., Abdul Ghani, N., Salleh, N. G. N., Basri, M., Abdul Rahman, R. N. Z. and Salleh, A. B. (2010). Development of coating materials from liquid wax esters for wood top-based coating, Journal Coatings Technology Research, 8(2): 229-236.

18.   Ma, X., Qiao, Z., Huang, Z. and Jing, X. (2013). The dependence of pendulum hardness on the thickness of acrylic coating. Journal Coatings Technology Research, 10(3): 433-439.

19.   Anderson, J., Brown, M., Kan, C., Nanjundiah, K. and Kalihari, V. (2013). Quantitative method for evaluating fingernail induced mar damage of coatings. Journal Coatings Technology Research, 10(4): 579-588.

20.   Ferrer, M., Cruces, M. A., Plou, F. J., Pastor, E., Fuentes, G., Bernabé, M., Parra, J. L. and Ballesteros, A. (2000). Chemical versus enzymatic catalysis for the regioselective synthesis of sucrose esters of fatty acids, Studies Surface Science Catalyst, 130: 509-514.

21.   Kondamudi, N., and McDougal, O. M. (2019). Microwave-assisted synthesis and characterization of stearic acid sucrose ester: a bio-based surfactant. Journal Surfactants Detergents, 22(4): 721-729.

22.   Ghoshray, S., Bhattacharya, D. K. (1992). Enzymatic preparation of ricinoleic acid esters of long-chain monohydric alcohols and properties of the esters. Journal American Oil Chemical Society, 69(1): 85-88.

23.   Said, H. M., Nik Salleh, N. G., Alias, M. S. and El-Naggar, A. W. M. (2013). Synthesis and characterization of hard materials based on radiation cured bio-polymer and nanoparticles, Journal Radiation Research Applied Sciences, 6(2): 71-78.