Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 914 - 923

 

 

 

 

CHANGES OF FATTY ACID COMPOSITION IN SCLERACTINIAN CORAL, Galaxea fascicularis (LINNAEUS, 1767) BY ACUTE EXPOSURE OF IRGAROL-1051

 

(Perubahan Komposisi Asid Lemak dalam Karang Scleractinia, Galaxea fascicularis (LINNAEUS, 1976) oleh Pededahan Akut Irgarol-1051)

 

Hassan Rashid Ali1, Che Din Mohd Safuan2, Marinah Mohd Ariffin3, Mohammed Ali Sheikh1, Noor Azhar Mohamed Shazili2, Aminudin Muhammad Afiq-Firdaus2, Zainudin Bachok2*

 

1Tropical Research Centre for Oceanography, Environment and Natural Resources,

The State University of Zanzibar, P. O. Box 146, Zanzibar-Tanzania

2Institute of Oceanography and Environment

3Faculty of Science and Marine and Environment

University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  zainudinb@umt.edu.my

 

 

Received: 20 February 2022; Accepted: 18 May 2022; Published:  25 August 2022

 

 

Abstract

Antifouling biocide such as Irgarol 1051 has been widely used as a replacement of tributyl tin (TBT). In Malaysia, we reported the level of Irgarol in coastal water up to 2021ng/L. This raises concern because high dosage of chemical pollutant in the seawater can affect the marine organisms.  This study therefore, examined the effect of Irgarol 1051 on fatty acids composition of reef building coral Galaxea fascicularis, collected in Pulau Bidong, Malaysia.  The corals were exposed to different doses of Irgarol 1051 under short term exposure (96 hrs) and the fatty acid compositions of the coral tissues were determined using the gas chromatography technique. The findings revealed no clear different (p >0.05) among untreated samples (fresh and control) and both were dominated by polyunsaturated fatty acids (PUFA), followed by saturated fatty acids (SAFA) and monounsaturated fatty acids (MUFA). In contrast, the treated samples of G. fascicularis (20, 100 and 500 µg/L) were significant different (p <0.05) where both SAFA and PUFA were significantly lowered than untreated samples especially at the samples exposed to higher dose of Irgarol 1051 (100 and 500 µg/L). As the level of dose increased, SAFA such as 16:0 and unsaturated fatty acid from ω3 and ω6 series were largely affected by the toxicology effect of the Irgarol 1051. The results indicate that Irgarol 1051 significantly affecting the health of the corals even at the lowest dose of Irgarol 1051 applied in this study. It is suggested that the antifouling biocide may have implication on metabolisms of the corals.

 

Keywords:  booster biocides, antifouling chemicals, fatty acids, hard coral, coral reefs

 

Abstrak

Biosid anti-kotoran seperti Irgarol 1051 telah digunakan secara meluas sebagai pengganti kepada tributil tin (TBT). Di Malaysia, kami telah melaporkan tahap Irgarol di perairan pantai mencapai setinggi 2021ng/L. Ini menimbulkan kebimbangan kerana dos bahan pencemar kimia yang tinggi dalam air laut boleh menjejaskan organisma marin. Oleh itu, kajian ini mengkaji kesan Irgarol 1051 pada komposisi asid lemak di dalam karang keras Galaxea fascicularis. Pendedahan jangka pendek (96 jam) telah dilakukan ke atas spesis karang ini dengan menggunakan kepekatan Irgarol yang berbeza dan komposisi asid lemak didalam tisu karang ditentukan dengan menggunakan teknik gas kromatografi. Hasil kajian mendapati tiada perubahan yang ketara pada karang yang tidak terdedah dengan Irgarol (sampel segar dan kawalan) dan kedua-duanya mempunyai kandungan asid lemak yang didominasi oleh asid lemak poli tidak tepu (PUFA), diikuti dengan asid lemak tepu (SAFA) serta asid lemak mono tidak tepu (MUFA). Sebaliknya, terdapat perbezaan yang ketara antara sampel karang yang tededah dengan kepekatan berbeza Irgarol (20, 100 and 500 µg/L) dimana komposisi SAFA dan PUFA lebih rendah berbanding sampel segar dan kawalan, terutamanya pada sampel yang terdedah pada kepekatan Irgarol 1051 yang tinggi. SAFA seperti 16:0 dan asid lemak tidak tepu dari kumpulan ω3 dan ω6 adalah antara asid lemak yang sangat terkesan terhadap pendedahan pada bahan kimia ini. Dapatan kajian juga menunjukkan, Irgarol 1051 sangat mempengaruhi kesihatan karang walaupun hanya terdedah pada dos yang rendah. Ini menunjukkan bahawa terdapat implikasi pada metabolisma karang apabila terdedah kepada bahan kimia ini.

 

Kata kunci:  biosid penggalak, bahan kimia anti-kotoran, asid lemak, karang keras, terumbu karang

 


Graphical Abstract

 

 

 

References

1.      Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A. R., Agüera, A. and Rodríguez, A. (2002). Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 76(2-4): 209-220.

2.      Ali, H. R., Arifin, M. M., Sheikh, M. A., Mohamed Shazili, N. A. and Bachok, Z. (2013). Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia. Marine Pollution Bulletin, 70(1-2): 253-257.

3.      Harino, H., Arai, T., Ohji, M., Ismail, A. and Miyazaki, N. (2009). Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Archives of Environmental Contamination and Toxicology, 56(3): 468-478.

4.      Sheikh, M. A., Higuchi, T., Fujimura, H., Imo, T. S., Miyagi, T. and Oomori, T. (2009). Contamination and impacts of new antifouling biocide Irgarol-1051 on subtropical coral reef waters. International Journal of Environmental Science and Technology, 6(3): 353-358.

5.      Bao, V. W. W., Leung, K. M. Y., Qiu, J. W. and Lam, M. H. W. (2011). Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Marine Pollution Bulletin, 62(5): 1147-1151.

6.      West, K. and Van Woesik, R. (2001). Spatial and temporal variance of river discharge on Okinawa (Japan): Inferring the temporal impact on adjacent coral reefs. Marine Pollution Bulletin, 42(10): 864-872.

7.      Kitada, Y., Kawahata, H., Suzuki, A. and Oomori, T. (2008). Distribution of pesticides and bisphenol a in sediments collected from rivers adjacent to coral reefs. Applied Catalysis B: Environmental, 82(3-4): 163-168.

8.      Omija, T. (2004). Corals and Coral Reefs, In Coral Reefs of Japan. Ministry of Environment and Japanese Coral Reef Society, Tokyo, pp. 64–68.

9.      Knutson, S., Downs, C. A. and Richmond, R. H. (2012). Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval. Ecotoxicology, 21(1): 1-8.

10.   Ali, H. R., Arifin, M. M., Sheikh, M. A., Mohamed Shazili, N. A. and Bachok, Z. (2015). Toxicological studies of Irgarol-1051 and its effects on fatty acid composition of Asian sea-bass, Lates calcarifer. Regional Studies in Marine Science, 2: 171-176.

11.   Cragg, B. A. and Fry, J. C. (1984). The use of microcosms to simulate field experiments to determine the effects of herbicides on aquatic bacteria. Journal General Microbiology, 130: 2309-2316.

12.   Sumpono Perotti, P., Belan, A., Forestier, C., Lavedrine, B. and Bohatier, J. (2003). Effect of diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere, 50: 445-455.

13.   American Public Health Association (1995). Standard method for the examination of water and wastewater, nineteenth edition. Washington, DC.

14.   Abdulkadir, S. and Tsuchiya, M. (2008). One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. Journal of Experimental Marine Biology and Ecology, 354(1): 1-8.

15.   Bachok, Z., Arifin, M. M., Sheikh, M. A., Mohamed Shazili, N. A. and Ali, H. R. (2016). Effects of Irgarol -1051 on fatty acid profile of solitary corals, Fungia fungites after acute exposure. Malaysian Journal of Analytical Sciences, 20(4): 697-703.

16.   Imbs, A. B., Demidkova, D. A., Latypov, Y. Y. and Pham, L. Q. (2007). Application of fatty acids for chemotaxonomy of reef-building corals. Lipids, 42: 1035-1046.

17.   Imbs, A. B., Yakovleva, I. M., Latyshev, N. A. and Pham, L. Q. (2010). Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russian Journal of Marine Biology, 36(6): 452-457.

18.   Harland, A. D., Navarro, J. C., Spencer Davies, P. and Fixter, L.M. (1993). Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Marine Biology, 117: 113-117.

19.   Kumar, M., Kumari, P., Gupta, V., Anisha, P. A., Reddy, C. R. K. and Jha, B. (2010). Differential responses to cadmium induced oxidative stress in marine macroalga Ulva lactuca (Ulvales, Chlorophyta). Biometals 23: 315-325.

20.   Mohd Safuan, C. D., Samshuri, M. A., Jaafar, S. N. T., Tan, H. C. and Bachok, Z. (2021). Physiological response of shallow-water hard coral Acropora digitifera to heat stress via fatty acid composition. Frontiers in Marine Science, 2021: 1187.

21.   Filimonova, V., Goncalves, F., Marques, J. C., De Troch, M. and Goncalves, A. M. (2016). Fatty acid profiling as bioindicator of chemical stress in marine organisms: a review. Ecological Indicators, 67: 657-672.

22.   Regoli, F. and Giuliani, M. E. (2014). Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Marine Environmental Research, 93: 106-117.

23.   Downs, C. and Downs, A. (2007). Preliminary examination of short-term cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure. Archives of Environmental Contamination and Toxicology, 52(1): 47-57.

24.   Baird, A. H., Bhagooli, R., Ralph, P. J. and Takahashi, S. (2008). Coral bleaching: the role of the host. Trends in Ecology & Evolution, 24(1): 16-20.

25.   RodríguezTroncoso, A. P., CarpizoItuarte, E. and CupulMagaña, A. L. (2016). Physiological response to high temperature in the Tropical Eastern Pacific coral Pocillopora verrucosa. Marine Ecology, 37(5): 1168-1175.

26.   Imbs, A. B. and Yakovleva, I. M. (2012). Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs, 31(1): 41-53.

27.   Okuyama, H., Orikasa, Y. and Nishida, T. (2008). Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Applied and Environmental Microbiology, 74(3): 570-574.

28.   Papina, M., Meziane, T. and Van Woesik, R. (2003). Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(3): 533-537.

29.   Jones, R. J. and Kerswell, A. P. (2003). Phytotoxicity of Photosystem II (PSII) herbicides to coral. Marine Ecology Progress Series, 261: 149-159.

30.   Teece, M. A., Estes, B., Gelsleichter, and E., Lirman, D. (2011). Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography, 56(4): 1285-1296.

31.   Kamei, M., Takayama, K., Ishibashi, H., Takeuchi, I. (2020). Effects of ecologically relevant concentrations of Irgarol 1051 in tropical to subtropical coastal seawater on hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. Marine Pollution Bulletin, 150: 110734.