Malaysian
Journal of Analytical Sciences Vol 26 No 4
(2022): 902 - 913
APLIKASI KARBON TERAKTIF SEKAM PADI TERHADAP EFLUEN
KILANG KELAPA SAWIT MENGGUNAKAN KAEDAH PENJERAPAN
(Application of Rice
Husk Activated Carbon on Palm Oil Mill Effluent using Adsorption Method)
Mohamad Jani Saad1*,
Chia Chin Hua2, Sarani Zakaria2, Mohd Shaiful Sajab3
1Pusat
Penyelidikan Kejuruteraan,
Institut
Penyelidikan dan Kemajuan Pertanian Malaysian (MARDI), Persiaran Mardi-UPM,
43400 Serdang Selangor, Malaysia
2Fakulti
Sains dan Teknologi
3Fakulti
Kejuruteraan
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Pengarang
utama: jani@mardi.gov.my
Received: 16 November 2021; Accepted: 27 February 2022 ;
Published: 25 August 2022
Abstrak
Karbon
aktif sekam padi (RHAC) dihasilkan dan digunakan untuk menghilangkan warna
pewarna organik dan efluen kilang kelapa sawit (POME) melalui proses
penjerapan. Sekam padi dikarbonisasi dan diaktifkan menggunakan kalium
hidroksida (KOH) dan natrium hidroksida (NaOH) untuk menghasilkan karbon aktif.
Sifat karbon aktif (AC) dikaji melalui analisis permukaan dan morfologi.
Penjanaan semula bahan penjerap dengan proses penjerapan/penyaherapan
menunjukkan bahawa AC dapat dijana semula hingga lima kitaran sementara masih
memberikan maksimum 67.26% kapasiti penjerapan pada regenerasi pertama dan
serendah 2.72% kapasiti penjerapan pada regenerasi kelima. RHAC juga digunakan
untuk perawatan POME untuk penyahwarnaan dan pengurangan jumlah karbon organik
(TOC) dan permintaan oksigen kimia (COD). Kajian ini menunjukkan bahawa RHAC
berpotensi digunakan sebagai bahan penjerap untuk menghilangkan pelbagai jenis
cas positif bahan terjerap dan POME dari larutan berair.
Kata
kunci: karbon aktif,
sekam padi, penjerapan, karbonisasi, efluen kilang kelapa sawit
Abstract
Rice husk activated
carbon (RHAC) is produced and used to remove the color of organic dyes and palm
oil mill effluents (POME) through an adsorption process. Rice husk is
carbonized and activated using potassium hydroxide (KOH) and sodium hydroxide
(NaOH) to produce activated carbon. The properties of activated carbon (AC)
were studied through surface and morphological analysis. Adsorbent regeneration
by adsorption/absorption process showed that AC could be regenerated for up to
five cycles while still providing a maximum of 67.26% adsorption capacity on
the first regeneration and as low as 2.72% adsorption capacity on the fifth
regeneration. RHAC is also used for POME treatment for discoloration and
reduction of total organic carbon (TOC) and chemical oxygen demand (COD). This
study shows that RHAC has the potential to be used as an adsorbent to remove
various types of positive charge adsorbate and POME from aqueous solutions.
Keywords: activated carbon, rice husk, adsorption,
carbonization, palm oil mill effluents
Graphical Abstract
Rujukan
1.
Eleanor, S., Abel, R., Soh, Loh, K.
and Abu Bakar, N. (2018). Bio-based products from palm oil mill effluent. Palm Oil Engineering Bulletin 127:
25-31.
2.
Ma, A. N. (1999). The planters, Kuala Lumpur
innovations in management of palm oil mill effluent. Palm Oil research
Institute of Malaysia (PORIM).
3.
Singh, R.P., Ibrahim, M.H., Esa, N.
and Iliyana, M.S. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. Reviews
in Environmental Science and Biotechnology 9(4): 331-344.
4.
Ohimain, E. I., Seiyaboh, E. I.,
Izah, S. C., Oghenegueke, E. V. and Perewarebo, G.T. (2012). Some selected
physico-chemical and heavy metal properties of palm oil mill effluents. Greener
Journal of Physical Sciences 2(4): 131-137.
5.
Kamyab, H., Tin Lee, C., Md Din, M.
F., Ponraj, M., Mohamad, S. E. and Sohrabi, M. (2014). Effects of nitrogen
source on enhancing growth conditions of green algae to produce higher lipid. Desalination
and Water Treatment 52(19-21): 3579-3584.
6.
Amosa, M. K. (2017). Towards
sustainable membrane filtration of palm oil mill effluent: Analysis of fouling
phenomena from a hybrid PAC-UF process. Applied Water Science, 7(6):
3365-3375.
7.
Ghani, M.S.H., Haan, T.Y., Lun, A.W.,
Mohammad, A.W., Ngteni, R. and Yusof, K.M.M. (2018). Fouling assessment of
tertiary palm oil mill effluent (POME) membrane treatment for water
reclamation. Journal of Water Reuse and Desalination 8(3): 412-423.
8.
Poh, P. E., Ong, W. Y. J., Lau, E. V.
and Chong, M. N. (2014). Investigation on micro-bubble flotation and
coagulation for the treatment of anaerobically treated palm oil mill effluent
(POME). Journal of Environmental Chemical Engineering 2(2): 1174-1181.
9.
Zahrim, A.Y., Dexter, Z. D., Joseph,
C. G. and Hilal, N. (2017). Effective coagulation-flocculation treatment of
highly polluted palm oil mill biogas plant wastewater using dual coagulants:
decolourisation, kinetics and phytotoxicity studies. Journal of Water
Process Engineering 16: 258-269.
10.
Ng, K. H., Lee, C. H., Khan, M. R.
and Cheng, C. K. (2016). Photocatalytic degradation of recalcitrant POME waste
by using silver doped titania: Photokinetics and scavenging studies. Chemical
Engineering Journal 286: 282-290.
11.
Abdulsalam, M., Hasfalina, C. M.,
Mohamed, H. A., Abd Karim, S. F. and Faiez, M. S. (2018). Microwave irradiated
coconut shell-activated carbon for decolourisation of palm oil mill effluent
(POME). Food Research 2(6): 526-534.
12.
Alkhatib, M. F., Mamun, A. A. and
Akbar, I. (2015). Application of response surface methodology (RSM) for
optimization of color removal from POME by granular activated carbon. International
Journal of Environmental Science and Technology 12(4): 1295-1302.
13.
Kaman, S. P. D., Tan, I. A. W. and
Lim, L. L. P. (2017). Palm oil mill effluent treatment using coconut shell –
based activated carbon: Adsorption equilibrium and isotherm. MATEC Web of
Conferences 87: 03009.
14.
Ibrahim, I., Hassan, M. A., Abd-Aziz,
S., Shirai, Y., Andou, Y., Othman, M. R., Ali, A. A. M., Zakaria, M. R. (2017).
Reduction of residual pollutants from biologically treated palm oil mill
effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal Cleaner Production 141: 122-
127.
15.
Mohammed, R. R. and Chong, M. F.
(2014). Treatment and decolorization of biologically treated palm oil mill
effluent (POME) using banana peel as novel biosorbent. Journal of
Environmental Management 132: 237-249.
16.
Parthasarathy, S., Mohammed,
R.R., Fong, C.M., Gomes, R.L., Manickam, S. 2016. A novel hybrid approach of
activated carbon and ultrasound cavitation for intensification of palm oil mill
effluent (POME) polishing. Journal
Cleaner Production 112: 1218-1226.
17.
Azmi, N. S. and Yunos, K. F. M.
(2014). Wastewater treatment of oil palm mill effluent (POME) by
ultrafiltration membrane separation technique coupled with adsorption treatment
as pre-treatment. Agriculture and
Agricultural Science Procedia 2: 257-264.
18.
Adeleke, A. R. O., Latiff, A. A. A.,
Daud, Z., Ridzuan, B., Daud, M. (2016). Remediation of raw wastewater of palm
oil mill using activated cow bone powder through batch adsorption. Key Engineering Materials 705: 380-384.
19.
Shah, I. K., Pre, P., Alappat, B. J.
(2013). Steam regeneration of adsorbents: an experimental and technical review.
Chemical Science Transaction 2(4):
1078-1088.
20.
Foo, K.Y. and Hameed, B. H. (2012). A
cost effective method for regeneration of durian shell and jackfruit peel
activated carbons by microwave irradiation. Chemical
Engineering Journal, 193-194: 404-409.
21.
Sanyiirek,
N. K. and Yönten, V. (2018). The desorption of methyl orange on active carbon
by Vitu vinifera L. and the effect of temperature to this system. International Conference on Physical
Chemistry and Functioned Materials 19-21 June 2018, Firat University,
Elazig Turkey.
22.
Yu, M., Jianli, Y.,
Wang, L. 2017. CO2 - activated porous carbon derived from cattail biomass for
removal of malachite green dye and application as super capacitors. Chemical Engineering Journal 317:
493-502.
23.
Regti, A., Laamari, M. R., Stiriba,
S. E. and El Haddad, M. (2017). Potential use of activated carbon derived from
Persea species under alkaline conditions for removing cationic dye from
wastewaters. Journal Associate Arab
University Basic Appllied Science 24: 10-18.
24.
Salleh, M. A. M., Mahmoud, D. K.,
Karim, W. A. W. A. and Idris, A. (2011). Cationic and anionic dye adsorption by
agricultural solid wastes: a comprehensive review. Desalination 280(1-3): 1-13.
25.
Berenguer, R.,
Marco-Lozar, J. P., Quijada, C., Cazorla-Amoros, D. and Morallon, E. (2010). Comparison among
chemical, thermal and electrochemical regeneration of phenol-saturated
activated carbon. Energy Fuels, 24:
3366-3372.
26.
He, X., Male, K. B., Nesterenko, P.
N., Brabazon, D., Paull, B. (2013). Adsorption and desorption of methylene blue
on porous carbon monoliths and nanocrystalline cellulose. Applied Materials & Interfaces 5: 8796-8304.
27.
Lata, S., Singh, P. K., Samadder, S.
R. (2014). Regeneration of adsorbents and recovery of heavy metals: a review. International Journal of Environment Science
Technology 12: 1461-1478.
28.
Bharathi, K. S. and Ramesh, S. T.
(2013). Removal of dyes using agricultural waste as low-cost adsorbents: a
review. Appllied Water Science 3:
773-790.
29.
Foo, K. Y. and Hameed, B. H. (2011).
Utilization of rice husks as a feedstock for preparation of activated carbon by
microwave induced KOH and K2CO3 activation. Bioresource
Technology 102(20): 9814-9817.
30.
Zhang, F., Li, G. D. and Chen, J. S.
(2008). Effects of raw material texture and activation manner on surface area
of porous carbons derived from biomass resources. Journal of Colloid and
Interface Science 327(1): 108-114.
31.
Sricharoenchaikul, V., Pechyen, C.,
Aht-Ong, D. and Atong, D. (2008). Preparation and characterization of activated
carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy
and Fuels 22(1): 31-37.
32.
Lu, C., Pan, L. and Zhu, B. (2015). Study the static
adsorption/desorption of formaldehyde on activated carbon. International Forum on Energy, Environment Science and Materials, 2015: 943-947.
33.
Lillo-Ródenas, M.
A., Lozano-Castelló, D., Cazorla-Amorós, D. and Linares-Solano, A. (2001). Preparation of activated
carbons from Spanish anthracite - II. Activation by NaOH. Carbon 39(5):
751-759.
34.
Guo, Y., Yu, K., Wang, Z. and Xu, H.
(2003). Effects of activation conditions on preparation of porous carbon from
rice husk. Carbon, 41(8): 1645-1648.
35.
Chunlan, L., Shaoping, X., Yixiong,
G., Shuqin, L. and Changhou, L. (2005). Effect of pre-carbonization of
petroleum cokes on chemical activation process with KOH. Carbon 43(11):
2295-2301.
36.
Muniandy, L., Adam, F., Mohamed, A.
R. and Ng, E. P. (2014). The synthesis and characterization of high purity
mixed microporous/mesoporous activated carbon from rice husk using chemical
activation with NaOH and KOH. Microporous and Mesoporous Materials 197:
316-323.
37.
Pandey, B. D., Saima, H. K.
and Chattree, A. (2015). Preparation and characterization of activated carbon
derived from rice husk by NaOH activation. International
Journal of Mathematics and Physical Sciences Research, 3(2): 158-164.
38. Cheenmatchaya, A. and Kungwankunakorn, S. (2014). Preparation of activated
carbon derived from rice husk by simple carbonization and chemical activation
for using as gasoline adsorbent.
International Journal of Environmental
Science and Development 5(2): 171-175.
39.
Gobi, K. and
Vadivelu, V. M. (2013). By-products of palm oil mill effluent treatment plant -
a step towards sustainability. Renewable
and Sustainable Energy Review 28: 788-803.
40.
Mohammed, R.
R. (2013). Decolorisation of biologically treated palm oil mill effluent (POME)
using adsorption technique. International Refereed Journal of Engineering
and Science, 2(10): 01-11.
41.
Mohammed, R.
R. and Chong, M. F. (2014). Treatment and decolorization of biologically treated
palm oil mill effluent (POME) using banana peel as novel biosorbent. Journal
of Environmental Management, 132: 237-249.
42.
AremuMuyibi,
S., Tajari, T., Jami, M. S. and KoladeAmosa, M. (2014). Removal of organics
from treated palm oil mill effluent (POME) using powdered activated carbon
(PAC). Advances in Environmental Biology, 8(3): 590-595.
43.
Othman, M. R.,
Hassan, M. A., Shirai, Y., Baharuddin, A. S., Ali, A. A. M. and Idris J.
(2013). Treatment of effluents from palm oil mill process to achieve river water
quality for reuse as recycled water in a zero emission system. Journal of Cleaner Production 67: 58-61.
44.
Siebdrath, N.,
Ziskind, G. and Gitis, V. (2012). Cleaning secondary effluents with organoclays
and activated carbon. Journal Chemical
Technology and Biotechnology 87: 51-57.
45.
Idris, J.,
MdSom, A., Musa, M., Ku Hamid, K. H., Husen, R. and MuhdRodhi, M. N. (2013).
Dragon fruit foliage plant-based coagulant for treatment of concentrated latex
effluent: comparison of treatment with ferric sulfate. Journal of Chemistry 38: 1-7.
46.
Lu, P. J., Lin, H. C., Yu, W.
T. and Chern, J. M. (2011). Chemical regeneration of activated carbon used for
dye adsorption. Journal of the Taiwan
Institute of Chemical Engineers 42: 305-311.
47.
Gerard, C. and
Örjan, G. (2005). Prediction of large variation in biota to sediment
accumulation factors due to concentration dependent black carbon adsorption of
planar hydrophobic organic compounds. Environmental
Toxicology & Chemistry 24(3): 495-498.
48.
Xing, X., Qu,
H., Shao, R., Wang, Q. and Xie, H. (2017). Mechanism and kinetics of dye
desorption from dye-loaded carbon (XC-72) with alcohol-water system as
desorbent. Water Science &
Technology, 76(5): 1243-1250.