Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 902 - 913

 

 

 

 

APLIKASI KARBON TERAKTIF SEKAM PADI TERHADAP EFLUEN KILANG KELAPA SAWIT MENGGUNAKAN KAEDAH PENJERAPAN

 

(Application of Rice Husk Activated Carbon on Palm Oil Mill Effluent using Adsorption Method)

 

Mohamad Jani Saad1*, Chia Chin Hua2, Sarani Zakaria2, Mohd Shaiful Sajab3

 

1Pusat Penyelidikan Kejuruteraan,

Institut Penyelidikan dan Kemajuan Pertanian Malaysian (MARDI), Persiaran Mardi-UPM, 43400 Serdang Selangor, Malaysia

2Fakulti Sains dan Teknologi

3Fakulti Kejuruteraan

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Pengarang utama:  jani@mardi.gov.my

 

 

Received: 16 November 2021; Accepted: 27 February 2022 ; Published:  25 August 2022

 

 

Abstrak

Karbon aktif sekam padi (RHAC) dihasilkan dan digunakan untuk menghilangkan warna pewarna organik dan efluen kilang kelapa sawit (POME) melalui proses penjerapan. Sekam padi dikarbonisasi dan diaktifkan menggunakan kalium hidroksida (KOH) dan natrium hidroksida (NaOH) untuk menghasilkan karbon aktif. Sifat karbon aktif (AC) dikaji melalui analisis permukaan dan morfologi. Penjanaan semula bahan penjerap dengan proses penjerapan/penyaherapan menunjukkan bahawa AC dapat dijana semula hingga lima kitaran sementara masih memberikan maksimum 67.26% kapasiti penjerapan pada regenerasi pertama dan serendah 2.72% kapasiti penjerapan pada regenerasi kelima. RHAC juga digunakan untuk perawatan POME untuk penyahwarnaan dan pengurangan jumlah karbon organik (TOC) dan permintaan oksigen kimia (COD). Kajian ini menunjukkan bahawa RHAC berpotensi digunakan sebagai bahan penjerap untuk menghilangkan pelbagai jenis cas positif bahan terjerap dan POME dari larutan berair.

 

Kata kunci:  karbon aktif, sekam padi, penjerapan, karbonisasi, efluen kilang kelapa sawit

 

 Abstract

Rice husk activated carbon (RHAC) is produced and used to remove the color of organic dyes and palm oil mill effluents (POME) through an adsorption process. Rice husk is carbonized and activated using potassium hydroxide (KOH) and sodium hydroxide (NaOH) to produce activated carbon. The properties of activated carbon (AC) were studied through surface and morphological analysis. Adsorbent regeneration by adsorption/absorption process showed that AC could be regenerated for up to five cycles while still providing a maximum of 67.26% adsorption capacity on the first regeneration and as low as 2.72% adsorption capacity on the fifth regeneration. RHAC is also used for POME treatment for discoloration and reduction of total organic carbon (TOC) and chemical oxygen demand (COD). This study shows that RHAC has the potential to be used as an adsorbent to remove various types of positive charge adsorbate and POME from aqueous solutions.

 

Keywords:  activated carbon, rice husk, adsorption, carbonization, palm oil mill effluents

 


Graphical Abstract

 

 

 

Rujukan

1.      Eleanor, S., Abel, R., Soh, Loh, K. and Abu Bakar, N. (2018). Bio-based products from palm oil mill effluent.  Palm Oil Engineering Bulletin 127: 25-31.

2.      Ma, A. N. (1999). The planters, Kuala Lumpur innovations in management of palm oil mill effluent. Palm Oil research Institute of Malaysia (PORIM).

3.      Singh, R.P., Ibrahim, M.H., Esa, N. and Iliyana, M.S. (2010). Composting of waste from palm oil mill: a  sustainable waste management practice. Reviews in Environmental Science and Biotechnology 9(4): 331-344.

4.      Ohimain, E. I., Seiyaboh, E. I., Izah, S. C., Oghenegueke, E. V. and Perewarebo, G.T. (2012). Some selected physico-chemical and heavy metal properties of palm oil mill effluents. Greener Journal of Physical Sciences 2(4): 131-137.

5.      Kamyab, H., Tin Lee, C., Md Din, M. F., Ponraj, M., Mohamad, S. E. and Sohrabi, M. (2014). Effects of nitrogen source on enhancing growth conditions of green algae to produce higher lipid. Desalination and Water Treatment 52(19-21): 3579-3584.

6.      Amosa, M. K. (2017). Towards sustainable membrane filtration of palm oil mill effluent: Analysis of fouling phenomena from a hybrid PAC-UF process. Applied Water Science, 7(6): 3365-3375.

7.      Ghani, M.S.H., Haan, T.Y., Lun, A.W., Mohammad, A.W., Ngteni, R. and Yusof, K.M.M. (2018). Fouling assessment of tertiary palm oil mill effluent (POME) membrane treatment for water reclamation. Journal of Water Reuse and Desalination 8(3): 412-423.

8.      Poh, P. E., Ong, W. Y. J., Lau, E. V. and Chong, M. N. (2014). Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). Journal of Environmental Chemical Engineering 2(2): 1174-1181.

9.      Zahrim, A.Y., Dexter, Z. D., Joseph, C. G. and Hilal, N. (2017). Effective coagulation-flocculation treatment of highly polluted palm oil mill biogas plant wastewater using dual coagulants: decolourisation, kinetics and phytotoxicity studies. Journal of Water Process Engineering 16: 258-269.

10.   Ng, K. H., Lee, C. H., Khan, M. R. and Cheng, C. K. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal 286: 282-290.

11.   Abdulsalam, M., Hasfalina, C. M., Mohamed, H. A., Abd Karim, S. F. and Faiez, M. S. (2018). Microwave irradiated coconut shell-activated carbon for decolourisation of palm oil mill effluent (POME). Food Research 2(6): 526-534.

12.   Alkhatib, M. F., Mamun, A. A. and Akbar, I. (2015). Application of response surface methodology (RSM) for optimization of color removal from POME by granular activated carbon. International Journal of Environmental Science and Technology 12(4): 1295-1302.

13.   Kaman, S. P. D., Tan, I. A. W. and Lim, L. L. P. (2017). Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm. MATEC Web of Conferences 87: 03009.

14.   Ibrahim, I., Hassan, M. A., Abd-Aziz, S., Shirai, Y., Andou, Y., Othman, M. R., Ali, A. A. M., Zakaria, M. R. (2017). Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal Cleaner Production 141: 122- 127.

15.   Mohammed, R. R. and Chong, M. F. (2014). Treatment and decolorization of biologically treated palm oil mill effluent (POME) using banana peel as novel biosorbent. Journal of Environmental Management 132: 237-249.

16.   Parthasarathy, S., Mohammed, R.R., Fong, C.M., Gomes, R.L., Manickam, S. 2016. A novel hybrid approach of activated carbon and ultrasound cavitation for intensification of palm oil mill effluent (POME) polishing. Journal Cleaner Production 112: 1218-1226.

17.   Azmi, N. S. and Yunos, K. F. M. (2014). Wastewater treatment of oil palm mill effluent (POME) by ultrafiltration membrane separation technique coupled with adsorption treatment as pre-treatment. Agriculture and Agricultural Science Procedia 2: 257-264.

18.   Adeleke, A. R. O., Latiff, A. A. A., Daud, Z., Ridzuan, B., Daud, M. (2016). Remediation of raw wastewater of palm oil mill using activated cow bone powder through batch adsorption. Key Engineering Materials 705: 380-384.

19.   Shah, I. K., Pre, P., Alappat, B. J. (2013). Steam regeneration of adsorbents: an experimental and technical review. Chemical Science Transaction 2(4): 1078-1088.

20.   Foo, K.Y. and Hameed, B. H. (2012). A cost effective method for regeneration of durian shell and jackfruit peel activated carbons by microwave irradiation. Chemical Engineering Journal, 193-194: 404-409.

21.   Sanyiirek, N. K. and Yönten, V. (2018). The desorption of methyl orange on active carbon by Vitu vinifera L. and the effect of temperature to this system. International Conference on Physical Chemistry and Functioned Materials 19-21 June 2018, Firat University, Elazig Turkey.

22.   Yu, M., Jianli, Y., Wang, L. 2017. CO2 - activated porous carbon derived from cattail biomass for removal of malachite green dye and application as super capacitors. Chemical Engineering Journal 317: 493-502.

23.   Regti, A., Laamari, M. R., Stiriba, S. E. and El Haddad, M. (2017). Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. Journal Associate Arab University Basic Appllied Science 24: 10-18.

24.   Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A. and Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280(1-3): 1-13.

25.   Berenguer, R., Marco-Lozar, J. P., Quijada, C., Cazorla-Amoros, D. and Morallon, E. (2010). Comparison among chemical, thermal and electrochemical regeneration of phenol-saturated activated carbon. Energy Fuels, 24: 3366-3372.

26.   He, X., Male, K. B., Nesterenko, P. N., Brabazon, D., Paull, B. (2013). Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. Applied Materials & Interfaces 5: 8796-8304.

27.   Lata, S., Singh, P. K., Samadder, S. R. (2014). Regeneration of adsorbents and recovery of heavy metals: a review. International Journal of Environment Science Technology 12: 1461-1478.

28.   Bharathi, K. S. and Ramesh, S. T. (2013). Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appllied Water Science 3: 773-790.

29.   Foo, K. Y. and Hameed, B. H. (2011). Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresource Technology 102(20): 9814-9817.

30.   Zhang, F., Li, G. D. and Chen, J. S. (2008). Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. Journal of Colloid and Interface Science 327(1): 108-114.

31.   Sricharoenchaikul, V., Pechyen, C., Aht-Ong, D. and Atong, D. (2008). Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy and Fuels 22(1): 31-37.

32.   Lu, C., Pan, L. and Zhu, B. (2015). Study the static adsorption/desorption of formaldehyde on activated carbon. International Forum on Energy, Environment Science and Materials, 2015: 943-947.

33.   Lillo-Ródenas, M. A., Lozano-Castelló, D., Cazorla-Amorós, D. and Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite - II. Activation by NaOH. Carbon 39(5): 751-759.

34.   Guo, Y., Yu, K., Wang, Z. and Xu, H. (2003). Effects of activation conditions on preparation of porous carbon from rice husk. Carbon, 41(8): 1645-1648.

35.   Chunlan, L., Shaoping, X., Yixiong, G., Shuqin, L. and Changhou, L. (2005). Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43(11): 2295-2301.

36.   Muniandy, L., Adam, F., Mohamed, A. R. and Ng, E. P. (2014). The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials 197: 316-323.

37.   Pandey, B. D., Saima, H. K. and Chattree, A. (2015). Preparation and characterization of activated carbon derived from rice husk by NaOH activation. International Journal of Mathematics and Physical Sciences Research, 3(2): 158-164.

38.   Cheenmatchaya, A. and Kungwankunakorn, S. (2014). Preparation of activated carbon derived from rice husk by simple carbonization and chemical activation for using as gasoline adsorbent. International Journal of Environmental Science and Development 5(2): 171-175.

39.   Gobi, K. and Vadivelu, V. M. (2013). By-products of palm oil mill effluent treatment plant - a step towards sustainability. Renewable and Sustainable Energy Review 28: 788-803.

40.   Mohammed, R. R. (2013). Decolorisation of biologically treated palm oil mill effluent (POME) using adsorption technique. International Refereed Journal of Engineering and Science, 2(10): 01-11.

41.   Mohammed, R. R. and Chong, M. F. (2014). Treatment and decolorization of biologically treated palm oil mill effluent (POME) using banana peel as novel biosorbent. Journal of Environmental Management, 132: 237-249.

42.   AremuMuyibi, S., Tajari, T., Jami, M. S. and KoladeAmosa, M. (2014). Removal of organics from treated palm oil mill effluent (POME) using powdered activated carbon (PAC). Advances in Environmental Biology, 8(3): 590-595.

43.   Othman, M. R., Hassan, M. A., Shirai, Y., Baharuddin, A. S., Ali, A. A. M. and Idris J. (2013). Treatment of effluents from palm oil mill process to achieve river water quality for reuse as recycled water in a zero emission system. Journal of Cleaner Production 67: 58-61.

44.   Siebdrath, N., Ziskind, G. and Gitis, V. (2012). Cleaning secondary effluents with organoclays and activated carbon. Journal Chemical Technology and Biotechnology 87: 51-57.

45.   Idris, J., MdSom, A., Musa, M., Ku Hamid, K. H., Husen, R. and MuhdRodhi, M. N. (2013). Dragon fruit foliage plant-based coagulant for treatment of concentrated latex effluent: comparison of treatment with ferric sulfate. Journal of Chemistry 38: 1-7.

46.   Lu, P. J., Lin, H. C., Yu, W. T. and Chern, J. M. (2011). Chemical regeneration of activated carbon used for dye adsorption. Journal of the Taiwan Institute of Chemical Engineers 42: 305-311.

47.   Gerard, C. and Örjan, G. (2005). Prediction of large variation in biota to sediment accumulation factors due to concentration dependent black carbon adsorption of planar hydrophobic organic compounds. Environmental Toxicology & Chemistry 24(3): 495-498.

48.   Xing, X., Qu, H., Shao, R., Wang, Q. and Xie, H. (2017). Mechanism and kinetics of dye desorption from dye-loaded carbon (XC-72) with alcohol-water system as desorbent. Water Science & Technology, 76(5): 1243-1250.