Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 884 - 901

 

 

 

 

POLYPHENOL-MEDIATED GREEN SYNTHESIS OF ZINC OXIDE AND THEIR ANTIBACTERIAL PROPERTIES: A NOVEL SIZE-CONTROLLED APPROACH

 

(Sintesis Hijau dengan Mediasi Polifenol dan Ciri Antibakteria Zink Oksida: Pendekatan Kawalan Saiz Baharu)

 

Neo Zhi Zing1, Balkis A. Talip1*, Soon Chin Fhong2, Ainun Rahmahwati Ainuddin3, Hatijah Basri1

 

1Faculty of Applied Sciences and Technology,

2Microelectronics and Nanotechnology-Shamsuddin Research Centre, Faculty of Electrical and Electronics Engineering

3Nano Structure and Surface Modification (NANOSURF), Faculty of Mechanical Engineering and Manufacturing

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

 

*Corresponding author:  balkis@uthm.edu.my

 

 

Received: 15 March 2022 ; Accepted: 18 May 2022 ; Published:  25 August 2022

 

 

Abstract

The concept of feasibility in green synthesis of zinc oxide (ZnO) nanoparticles has been discussed in many studies. However, size control using volume of plant extracts undermines the process upscaling potential. This study is aimed at improving the repeatability and reproducibility of green synthesis of ZnO by controlling total phenolic content of plant extracts. Leaf extracts of Camellia sinensis, Manilkara zapota and Elaeis guineensis were incorporated at gallic acid equivalent of 100 mgg-1 to synthesize ZnO. The phytochemical profile of plant extracts and physical properties of ZnO were determined. In addition, antibacterial activity of ZnO against Escherichia coli and Staphylococcus aureus was examined. Consistency in particle sizes of ZnO has justified the feasibility of using total phenolic content for size control. Under neutral pH, role of phytochemicals as chelating agents predominated. Under basic condition, complex phytochemicals demonstrated structure-directing effect on ZnO microparticles. The antibacterial strength of ZnO has been reduced by 16 times with reduction in particle size. Meanwhile, the incorporation of phytochemicals enhanced antibacterial activity of ZnO by fourfold. This study proposed that particle size and morphology of ZnO could be controlled through manipulation of total phenolic content of plant extracts and the reaction pH of green synthesis.

 

Keywords:  green synthesis, polyphenol, zinc oxide, size control

 

Abstrak

Konsep dalam kebolehlaksanaan proses sintesis hijau terhadap nanopartikel zink oksida (ZnO) telah diperjelaskan dalam pelbagai kajian. Namun begitu, kawalan saiz menggunakan isipadu ekstrak tumbuhan menjejaskan potensi dalam meningkatkan skala proses. Kajian ini bertujuan untuk meningkatkan kebolehulangan sintesis hijau ZnO dengan mengawal jumlah kandungan fenolik ekstrak tumbuhan yang digabungkan. Ekstrak daun Camellia sinensis, Manilkara zapota dan Elaeis guineensis telah dicampurkan pada persamaan asid gallik sebanyak 100 mgg-1 untuk menghasilkan ZnO. Profil fitokimia ekstrak tumbuhan dan sifat fizikal ZnO telah ditentukan. Di samping itu, aktiviti antibakteria ZnO terhadap Escherichia coli dan Staphylococcus aureus telah diperiksa. Ketekalan dalam saiz partikel ZnO menjustifikasikan kebolehlaksaan penggunaan jumlah kandungan fenolik untuk kawalan saiz dalam sintesis hijau. Di bawah pH neutral, peranan fitokimia sebagai agen pengkelat berdominasi. Di bawah keadaan alkali, fitokimia kompleks menunjukkan kesan pengarahan struktur pada mikropartikel ZnO. Kekuatan antibakteria ZnO berkurangan sebanyak 16 kali ganda dengan pengurangan saiz partikel. Sementara itu, penggunaan fitokimia dalam proses sintesis telah meningkatkan aktiviti antibakteria ZnO sebanyak 4 kali ganda. Kajian ini mencadangkan bahawa saiz partikel dan morfologi ZnO boleh dikawal melalui manipulasi jumlah kandungan fenolik ekstrak tumbuhan dan pH tindak balas sintesis hijau.

 

Kata kunci:  sintesis hijau, polifenol, zink oksida, kawalan saiz

 


Graphical Abstract

 

 

 

References

1.      Inshakova, E. and Inshakov, O. (2017). World market for nanomaterials: structure and trends. MATEC Web of Conferences, 129: 02013.

2.      Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. and Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9: 1050-1074.

3.      Singh, J., Dutta, T., Kim, K., Rawat, M., Samddar, P. and Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16: 84.

4.      Zikalala, N., Matshetshe, K., Parani, S. and Oluwafemi, O. S. (2018). Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano-Struct. Nano-Objects, 16: 288-299.

5.      Kharissova, O. V., Kharisov, B. I., González, C. M. O., Méndez, Y. P. and López, I. (2019). Greener synthesis of chemical compounds and materials. Royal Society Open Sciences, 6: 191378.

6.      Rodríguez-León, E., Rodríguez-Vázquez, B. E., Martínez-Higuera, A., Rodríguez-Beas, C., Larios-Rodríguez, E., Navarro, R. E., López-Esparza, R. and Ińiguez-Palomares, R. A. (2019). Synthesis of gold nanoparticles using Mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Research Letters, 14: 334.

7.      Pal, S., Pal, K., Mukherjee, S., Bera, D., Karmakar, P. and Sukhen, D. (2020). Green cardamom mediated phytosynthesis of ZnO NPs and validation of its antibacterial and anticancerous potential. Materials Research Express, 7: 015068.

8.      Soni, V., Raizada, P., Singh, P., Cuong, H. N., Rangabhashiyam, S., Saini, A., Saini, R. V., Le, Q. V., Nadda, A. K., Le, T. and Nguyen, V. (2021). Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: a review. Environmental Research, 202: 111622.

9.      Siddiqi, K. S., Ur Rahman, A., Tajuddin and Husen, A. (2018). Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters, 13(1): 141.

10.   Pasquet, J., Chevalier, Y., Pelletier, J., Couval, E., Bouvier, D. A and Bolzinger, M. (2014). The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surface A Physicochemical Engineering Aspects, 457: 263-274.

11.   Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V. and Buszewski, B. (2017). Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Advance Colloid Interface Sciences, 249: 37-52.

12.   Xu, J., Huang, Y., Zhu, S., Abbes, N., Jing, X. and Zhang, L. (2021). A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. Journal Engineering Fibers Fabrication, 16: 1-14.

13.   Câmara, J. S., Albuquerque, B. R., Aguiar, J., Corręa, R. C. G., Gonçalves, J. L., Granato, D., Pereira, J. A. M., Barros, L. and Ferreira, I. C. F. R. (2020). Food bioactive compounds and emerging techniques for their extraction: polyphenols as a case study. Foods (Basel, Switzerland), 10(1): 37.

14.   Belščak-Cvitanović, A., Valinger, D., Benković, M, Tušek, A. J., Jurina, T., Komes, D. and Kljusurić, J. G. (2017). Integrated approach for bioactive quality evaluation of medicinal plant extracts using HPLC-DAD, spectrophotometric, near infrared spectroscopy and chemometric techniques. International Journal Food Production, 20(3): 1-18.

15.   Almini, S. M. and Akbari, A. (2019). Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnology, 13(8): 771-777.

16.   Mercado-Mercado, G., Blancas-Benitez, F. J., Velderrain-Rodríguez, G. R., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E. and Sáyago-Ayerdi, S. G. (2015). Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction residues of Roselle (Hibiscus sabdariffa L.). Journal Functional Foods, 18: 171-181.

17.   Dudonné, S., Vitrac, X., Coutiѐre, P., Woillez, M. and Mérillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal Agriculture Food Chemistry, 57: 1768-1774.

18.   Iqbal, E., Salim, K. A. and Lim, L. B. L. (2015). Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal King Saud University Sciences, 27: 224-232.

19.   Gul, R., Jan, S. U., Faridullah, S., Sherani, S. and Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Science World Journal, 2017: 5873648.

20.   Aiyegoro, O. A. and Okoh, A. I. (2010). Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary Alternative Medicine, 10: 21.

21.   Ukoha, P. O., Cemaluk, E. A. C., Nnamdi, O. L. and Madus, E. P. (2011). Tannins and other phytochemicals of the Samanaea saman pods and their antimicrobial activities. African Journal Pure Applied Chemstry, 5(8): 237-244.

22.   El Aziz, M. M. A., Ashour, A. S. and Melad, A. S. G. (2019). A review on saponins from medicinal plants: chemistry, isolation, and determination. Journal Nanomedicine Research, 7(4): 282-288.

23.   Shukla, S., Mehta, A. and Bajpai, V. K. (2013). Phytochemical screening and anthelmintic and antifungal activities of leaf extracts of Stevia rebaudiana. Journal of Biologically Active Products from Nature, 3(1): 56-63.

24.   Top, A. and Çetinkaya, H. (2015). Zinc oxide and zinc hydroxide formation via aqueous precipitation: effect of the preparation route and lysozyme addition. Materials Chemical Physics, 167: 77-87.

25.   He, Y., Ingudam, S., Reed, S., Gehring, A., Strobaugh, Jr. T. P. and Irwin, P. (2016). Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. Journal Nanobiotechnology, 14: 54.

26.   Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal Science Technology, 4(1): 97-118.

27.   Grasel, F. d. S., Ferrăo, M. F. and Wolf, C. R. (2016). Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochimica Acta A Molecular Biomolecular Spectroscopy, 153: 94-101.

28.   Coates, J. (2006). Interpretation of infrared spectra, A practical approach. in R. A. Meyers and M. L. McKelvy (Ed.). Encyclopedia of Analytical Chemistry. Wiley, New York: pp. 10815-10837.

29.   Santos, D. I., Correia, M. J. N., Mateus, M. M., Saraiva, J. A., Vicente, A. A. and Moldăo, M. (2019). Fourier transform infrared (FT-IR) spectroscopy as a possible rapid tool to evaluate abiotic stress effects on pineapple by-products. Applied Science, 9: 4141.

30.   Caunii, A., Pribac, G., Grozea, I., Gaitin, D. and Samfira, I. (2012). Design of optimal solvent for extraction of bio-active ingredients from six varieties of Medicago sativa. Chemical Central Journal, 6: 123.

31.   Thummajitsakul, S., Samaikam, S., Tacha, S. and Silprasit, K. (2020). Study of FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of Garcinia schomburgkiana leaves. LWT, 134: 110005.

32.   Baranska, M. and Schulz, H. (2009). Determination of alkaloids through infrared and Raman spectroscopy. in Cordell, G. A. (Ed.). The Alkaloids: Chemistry and Biology. Elsevier Inc., Netherlands: pp. 217-255.

33.   Wahab, R., Kim, Y. and Shin, H. (2009). Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Materials Transaction, 50(8): 2092-2097.

34.   Rayerfrancis, A., Bhargav, P. B., Ahmed, N., Chandra, B. and Dhara, S. (2015). Effect of pH on the morphology of ZnO nanostructures and its influence on structural and optic properties. Physica B Condensation Matters, 457: 96-102.

35.   Rafaie, H. A., Samat, N. and Nor, R. M. (2014). Effect of pH on the growth of zinc oxide nanorods using Citrus aurantifolia extracts. Materials Letters, 137: 297-299.

36.   Padalia, H., Moteriya, P. and Chanda, S. (2018). Synergistic antimicrobial and cytotoxic potential of zinc oxide nanoparticles synthesized using Cassia auriculata leaf extract. BioNanoScience, 8: 196-206.

37.   Mohammadi, F. M. and Ghasemi, N. (2018). Influence of temperature and concentration on biosynthesis and characterization of zinc oxide nanoparticles using cherry extract. Journal Nanostructure Chemistry, 8: 93-102.

38.   Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M. and Hong, S. I. (2018). Green synthesis and characterization of zinc oxide nanoparticles using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advance Nature Sciences: Nanoscience, Nanotechnology, 9: 015008.

39.   Umar, H., Kavaz, D. and Rizaner, N. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal Nanomedicine, 14: 87-100.

40.   Sharmila, G., Thirumarimurugan, M. and Muthukumaran, C. (2019). Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchemical Journal, 145: 578-587.

41.   Matinise, N., Fuku, X. G., Kaviyarasu, K., Mayedwa, N. and Maaza, M. (2017). ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Applied Surface Sciences, 406: 339-347.

42.   Fakhari, S., Jamzad, M. and Fard, H. K. (2019). Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters Review, 12(1): 19-24.

43.   Liu, Y. C., Li, J., Ahn, J., Pu, J., Rupa, E. J., Huo, Y. and Yang, D. C. (2020). Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik, 218: 165245.

44.   Chakraborty, S., Farida, J. J., Simon, R., Kasthuri, S. and Mary, N. L. (2020). Averrhoe carrambola fruit extract assisted green synthesis of ZnO nanoparticles for the photodegradation of congo red dye. Surface Interfaces, 19: 100488.

45.   Díaz, N., Suárez, D. and Merz, Jr. K. M. (2000). Hydration of zinc ions: theoretical study of [Zn(H2O)4](H2O)82+ and [Zn(H2O)6](H2O)62+. Chemistry Physics Letters, 326: 288-292.

46.   Krężel, A. and Maret, W. (2016). The biological inorganic chemistry of zinc ions. Archive Biochemical Biophysics, 611: 3-19.

47.   Soldatavić, T. (2018). Mechanism of interactions of zinc(II) and copper(II) complexes with small biomolecules. IntechOpen: pp. 79472.

48.   Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cańongo, C. and Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanisms. IntechOpen: 85270.

49.   Sobiesiak, M. (2017). Chemical structure of phenols and its consequence for sorption processes. IntechOpen: 66537.

50.   Wang, M., Zhou, Y., Zhang, Y., Hahn, S. H. and Kim, E. J. (2011). From Zn(OH)2 to ZnO: a study on the mechanism of phase transformation. CrystEngComm, 13: 6024-6026.

51.   Zhu, Y. F., Fan, D. H., Dong, Y. W. and Zhou, G. H. (2014). Morphology-controllable ZnO nanostructures: ethanol-assisted synthesis, growth mechanism and solar cell applications. Superlattices Microstructure, 74: 261-272.

52.   Javed, R., Zia, M., Naz, S., Aisida, S. O., Ain, N. U. and Ao, Q. (2020). Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal Nanobiotechnology, 18: 172.

53.   Udvardi, B., Kovács, I. J., Fancsik, T., Kónya, P., Bátori, M., Stercel, F., Falus G. and Szalai, Z. (2017). Effects of particle size on the attenuated total reflection spectrum of minerals. Applied Spectroscopy, 71(6): 1157-1168.

54.   Peng, X., Palma, S., Fisher, N. S. and Wong, S. S. (2011). Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102: 186-196.

55.   Lallo da Silva, B., Abuçafy, M. P., Berbel Manaia, E., Oshiro Junior, J. A., Chiari-Andréo, B. G., Pietro, R. and Chiavacci, L. A. (2019). Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. International Journal Nanomedicine14: 9395-9410.

56.   Jin, S. and Jin, H. (2021). Antimicrobial activity of zinc oxide nano/microparticles and their combinations against pathogenic microorganisms for biomedical applications: from physicochemical characteristics to pharmacological aspects. Nanomaterials (Basel, Switzerland), 11(2): 263.

57.   Raghupathi, K. R., Koodali, R. T. and Manna, A. C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27: 4020-4028.

58.   Naqvi, Q., Kanwal, A., Qaseem, S., Naeem, M., Ali, S. R., Shaffique, M. and Maqbool, M. (2019). Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. Journal Biology Physics, 45(2): 147-159.

59.   Misra, S. K., Dybowska, A., Berhanu, D., Luoma, S. N. and Valsami-Jones, E. (2012). The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Science Total Environment, 438: 225-232.

60.   Peng, Y., Tsai, Y., Hsiung, C., Lin, Y. and Shih, Y. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal Hazardous Materials, 322: 348-356.

61.   Zhang, Y., Chen, Y., Westerhoff, P. and Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 43: 4249-4257.

62.   Dimapilis, E. A. S., Hsu, C., Mendoza, R. M. O. and Lu, M. (2018). Zinc oxide nanoparticles for water disinfection. Sustainable Environmental Research, 28: 47-56.

63.   Jin, S., Jin, J., Hwang, W. and Hong, S. W. (2019). Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection. International Journal Nanomedicine, 14: 1737-1751.