Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 867 - 883

 

 

 

 

A BRIEF REVIEW ON CORROSION INHIBITION STUDY OF ORGANIC LIGAND: ELECTROCHEMICAL, MORPHOLOGY, AND ISOTHERM STUDIES

 

(Ulasan Ringkas Terhadap Kajian Perencatan Kakisan Ligan oleh Ligan Organik: Kajian Elektrokimia, Morfologi dan Isoterma)

 

Nur Nadia Dzulkifli1,3*, Nur Zalin Khaleda Razali3, Norsanida Iswa Sahani3, Sheikh Ahmad Izaddin Sheikh Mohd Ghazali1,3, Dzeelfa Zainal Abidin2, Asiah Abdullah1,3, Nurazira Mohd Nor1,3

 

1Material, Inorganic, and Oleochemistry (MaterInOleo) Research Group, Faculty of Applied Sciences

2Academy of Language Studies

3School of Chemistry and Environment, Faculty of Applied Sciences

Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi,

72000 Kuala Pilah, Negeri Sembilan, Malaysia

 

*Corresponding author: nurnadia@uitm.edu.my

 

 

Received: 10 February 2022; Accepted: 2 April 2022; Published:  25 August 2022

 

 

Abstract

Over the past decade, the corrosion inhibition of organic ligands has been extensively studied in numerous experiments in acid media. The number of published papers related to corrosion inhibition studies of organic ligands has been rising exponentially. The organic ligands have high inhibitive properties due to their capability to adsorb on the surface of metal by forming a protective layer. Having lone pair electrons (S, N, O) and multiple bonds (π bonds) allow them to adsorb on the surface of metals efficiently. However, there is very limited and less comprehensive information on the characterization of corrosion inhibition performance of organic ligands on the surface of metals. Therefore, this review paper provides a comprehensive review on the corrosion inhibition performance through various characterization methods, which are the electrochemical method [Electrochemical Impedance Spectroscopy (EIS), Polarization], Scanning Electron Microscope (SEM) with Energy Dispersive X-ray (EDX), and Langmuir Isotherm, which are thoroughly discussed herein.

 

Keywords: electrochemical impedance spectroscopy, polarization, scanning electron microscope with energy dispersive     X-ray; Langmuir isotherm

 

Abstrak

Sepanjang dekad yang lalu, perencatan kakisan ligan organik di dalam media berasid telah diuji di dalam eksperimen secara meluas dalam banyak eksperimen dalam media asid. Bilangan makalah yang diterbitkan berkaitan dengan kajian perencatan kakisan ligan organik telah meningkat secara eksponen. Ligan organik mempunyai sifat perencat yang tinggi kerana keupayaannya untuk menjerap pada permukaan logam dengan membentuk lapisan pelindung. Mempunyai pasangan elektron tunggal (S, N, O) dan ikatan berganda (ikatan π) membolehkan ligan organik menjerap pada permukaan logam dengan berkesan. Walau bagaimanapun, terdapat maklumat yang sangat terhad dan kurang komprehensif mengenai pencirian prestasi perencatan kakisan ligan organik pada permukaan logam. Oleh itu, kertas kajian ini menyediakan ulasan kajian secara menyeluruh tentang pencirian prestasi perencatan kakisan melalui pelbagai kaedah pencirian seperti kaedah elektrokimia [Spectroskopi Impedan Elektrokimia (EIS), Polarisasi], Mikroskop Elektron Pengimbas (SEM) dengan Sinar-X Serakan Tenaga (EDX), dan Isoterma Langmuir dan telah dibincangkan dengan teliti di sini.

 

Kata kunci: spektroskopi impedan elektrokimia, polarisasi, mikroskop elektron pengimbas dengan sinar-X serakan tenaga, isoterma Langmuir

 


Graphical Abstract

 

 

 

References

1.    Damborenea, J. de., Conde, A. and Arenas, M. A. (2014). Chapter 3: 3 - Corrosion inhibition with rare earth metal compounds in aqueous solutions. Rare Earth-Based Corrosion Inhibitors. Woodhead Publishing Series in Metals and Surface Engineering. Elsevier.

2.     Amitha, R. B. E. and Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: an overview. International Journal of Corrosion, 2012: 1-15.

3.   Kumar, H. and Yadav, V. (2021). Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Experimental and theoretical study. Journal of Molecular Liquid, 335: 1-16.

4.  Danaee, I., Bahramipanah, N., Moradi, S. and Nikmanesh, S. (2016). Impedance spectroscopy studies on corrosion inhibition behavior of synthesized n,n’-bis(2,4-dihydroxyhydroxybenzaldehyde)-1,3-propandiimine for API-5L-X65 steel in HCl solution. Journal of Electrochemical Science and Technology, 7(2): 153-160.

5.  Thoume, A., Elmakssoudi, A., Benmessaoud, L. D., Benzbiria, N., Benhiba, F., Dakir, M., Zahouily, M., Zarrouk, A., Azzi, M. and Zertoubi, M. (2020). Amino acid structure analog as a corrosion inhibitor of carbon steel in 0.5 M H2SO4: Electrochemical, synergistic effect and theoretical studies. Chemical Data Collections, 30: 1-18.

6.  Dehghani, A., Mostafatabar, A. H., Bahlakeh, G., Ramezanzadeh, B. and Ramezanzadeh, M. (2020). Detailed-level computer modeling explorations complemented with comprehensive experimental studies of Quercetin as a highly effective inhibitor for acid-induced steel corrosion. Journal of Molecular Liquid, 309: 1-51.

7.    Beytur, M., Irak, Z. T., Manap, S. and Yuksek, H. (2019). Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4,5-dihydro-1H-1,2,4-Triazol-5-one derivatives. Heliyon, 5: 1-8.

8.  Ozkir, D. (2019). A newly synthesized schiff base derived from condensation reaction of 2,5-dichloroaniline and benzaldehyde: Its applicability through molecular interaction on mild steel as an acidic corrosion inhibitor by using electrochemical techniques. Journal of Electrochemical Science and Technology, 10(1): 37-54.

9.     Marinescu, M. (2019). Recent advances in the use of benzimidazoles as corrosion inhibitors. BMC Chemistry, 13(136): 1-21.

10.   Jamil, D. M., Al-Okbi, A. K., Al-Baghdadi, S. B., Al-Amiery, A. A., Kadhim, A., Gaaz, T. S., Kadhum, A. A. H. and Mohamad, A. B. (2018). Experimental and theoretical studies of Schiff bases as corrosion inhibitors. Chemistry Central Journal, 12(7): 1-9.

11.      Padash, R., Rahimi-Nasrabadi, M., Rad, A. S., Sobhani-Nasab, A., Jesionowski, T. and Ehrlich, H. (2019). A theoretical study of two novel Schiff bases as inhibitors of carbon steel corrosion in acidic medium. Applied Physic A, 125(78): 1-11.

12.   Keles, H.¸ Emir, D. M. and Keles, M. (2015). A comparative study of the corrosion inhibition of low carbon steel in HCl solution by an imine compound and its cobalt complex. Corrosion Science, 101: 19-31.

13.   Lgaz, H., Salghi, R., Jodeh, S. and Hammout, B. (2017). Effect of clozapine on inhibition of mild steel corrosion in 1.0 M HCl medium. Journal of Molecular Liquid, 225: 271-280.

14.   Khaled, K. F., Samardzija, K. B. and Hackerman, N. (2006). Cobalt(III) complexes of macrocyclic-bidentate type as a new group of corrosion inhibitors for iron in perchloric acid. Corrosion Science, 48: 3014-3034.

15.      Abdallah, M., Gad, E., Sobhi, M., Al-Fahemi, J. H. and Alfakeer, M. (2019). Performance of tramadol drug as a safe inhibitor for aluminum corrosion in 1.0M HCl solution and understanding mechanism of inhibition using DFT. Egyptian Journal of Petroleum, 28(2): 173-181.

16.   Boughoues, Y.Benamira, M., Messaadia, L.Bouider, N. and Abdelaziz, S. (2020). Experimental and theoretical investigations of four amine derivatives as effective corrosion inhibitors for mild steel in HCl medium. RSC Advances, 10: 24145-24158.

17.      Ferreira, E. S., Giancomelli, C., Giacomelli, F. C. and Spinelli, A. (2004). Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics, 83(1): 129-134.

18.      Nikoo, S. Z., Shockravi, A., Ghartavol, H. M., Halimehjani, A. Z., Ostadrahimi, M., Mirhosseini, S. M., Behzadi, H. and Ghorbani, M. (2020). A study of Glycine-based dithiocarbamates as effective corrosion inhibitors for cold rolled carbon steel in HCl solutions. Surfaces and Interfaces, 21: 1-67.

19.      Xu, B., Yang, W., Liu, Y., Yin, X., Gong, W. and Chen, Y. (2014). Experimental and theoretical evaluation of two pyridine carboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. Corrosion Science, 78: 260-268.

20.   Mahgoub, F. M., Abdel-Nabey, B. A. and El-Samadisy, Y. A. (2010). Adopting a multipurpose inhibitor to control corrosion of ferrous alloys in cooling water systems. Materials Chemistry and Physics, 120(1): 104-108.

21.   Geoffrey, B., Dang, D. N., Stephanie, M. and Sebastien, T. (2014). Analysis of the non-ideal capacitive behaviour for high impedance organic coatings. Progress in Organic Coatings, 77(12): 2045-2053.

22.   Aouniti, A., Elmsellema, H., Tighadouini, S., Elazzouzi, M., Radi, S., Chetouani, A., Hammouti, B. and Zarrouk, A. (2016). Schiff’s base derived from 2-acetyl thiophene as corrosion inhibitor of steel in acidic medium. Journal of Taibah University for Science, 10: 774-785.

23.   Prajila, M., Ammal, P. R. and Abraham, J. (2018). Comparative studies on the corrosion inhibition characteristics of three different triazine based Schiff’s bases, HMMT, DHMMT and MHMMT. Egyptian Journal of Petroleum, 27(4): 467-475.

24.   Chetouani, A., Medjahed, K., Benabadji, K. E., Hammouti, B., Kertit, S. and Mansri, A. (2003). Poly(4-vinylpyridine isopentyl bromide) as inhibitor for corrosion of pure iron in molar sulphuric acid. Progress in Organic Coatings, 46(4): 312-316.

25.      Aby, P., Joby, T. K., Vinod, P. R. and Shaju, K. S. (2012). 3-Formylindole-4-aminobenzoic Acid: A potential corrosion inhibitor for mild steel and copper in hydrochloric acid media. ISRN Corrosion, 2012: 1-10.

26.   Okonkwo, P. C., Sliem, M. H., Shakoor, R. A., Mohamed, A. M. A. and Abdullah, A. M. (2017). Effect of temperature on the corrosion behavior of API X120 pipeline steel in H2S environment. Journal of Materials Engineering and Performance, 26: 3775-3783.

27.      Aytac, A., Ozmen, U. and Kabasakaloglu, A. (2005). Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Materials Chemistry and Physics, 89(1): 176-181.

28.   Mourya, P., Banerjee, S., Rastogi, R. B. and Singh, M. M. (2013). Inhibition of mild steel corrosion in hydrochloric and sulfuric acid media using a thiosemicarbazone derivative. Industrial & Engineering Chemistry Research, 52(36): 12733-12747.

29.   Elias, E. E., Henry, U. N. and Damian, C. O. (2018). Synthesis and characterization of Schiff bases NBBA, MNBA and CNBA. Heliyon, 4(7): 1-25

30.      Jiyaul, H., Ansari, K. R., Vandana, S., Quraishi, M. A. and Obot, I. B. (2017). Pyrimidine derivatives as novel acidizing corrosion inhibitors for N80 steel useful for petroleum industry: A combined experimental and theoretical approach. Journal of Industrial and Engineering Chemistry, 49: 176-188.

31.   Solmaz, R., Kardas, G., Çulha, M., Yazici, B. and Erbil, M. (2008). Investigation of adsorption and inhibitive effect of 2-mercaptothiazoline on corrosion of mild steel in hydrochloric acid media. Electrochimica Acta, 53(20): 5941-5952.

32.   Khaled, K. F. (2010). Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives. Electrochimica Acta, 55: 5375-5383.

33.   Bhawna, C., Ashish, K. S., Sanjeeve, T., Balaram, P., Hassane, L., Ill-Min, C., Ranjana, J. and Eno, E. E. (2020). Comparative investigation of corrosion-mitigating behavior of thiadiazole-derived bis-schiff bases for mild steel in acid medium: experimental, theoretical, and surface study. ACS Omega, 5: 13503-13520.

34.   El Basiony, N. M.Amr, E., Nady, H., Migahed, M. A. and Zaki, E. G. (2019). Adsorption characteristics and inhibition effect of two Schiff base compounds on corrosion of mild steel in 0.5 M HCl solution: experimental, DFT studies, and Monte Carlo simulation. RSC Advances, 9: 10473-10485.

35.   Jacob, K. S. and Geetha, P. (2010). Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone. Corrosion Science, 52: 224-228.

36.      Idouhli, R., Ousidi, A. N., Koumya, Y., Abouelfida, A., Benyaich, A., Auhmani, A. and Moulay, Y. A. I. (2018). Electrochemical studies of monoterpenic thiosemicarbazones as corrosion inhibitor for steel in 1 M HCl. International Journal of Corrosion, 2018: 1-15.

37.   Manilal, M., Sourav, K. S., Prabhas, B., Naresh, C. M., Harish, H. and Priyabrata, B. (2020). Corrosion inhibition property of azomethine functionalized triazole derivatives in 1 molL−1 HCl medium for mild steel: Experimental and theoretical exploration. Journal of Molecular Liquid, 313: 1-15.

38.   Muthukrishnan, P., Prakash, P., Jeyaprabha, B. and Shankar, K. (2019). Stigmasterol extracted from Ficus hispida leaves as a green inhibitor for the mild steel corrosion in 1M HCl solution. Arabian Journal of Chemistry, 12(8): 3345-3356.

39.      Ammal, P. R., Prajila, M. and Abraham, J. (2018). Physicochemical studies on the inhibitive properties of a 1,2,4-triazole Schiff’s base, HMATD, on the corrosion of mild steel in hydrochloric acid. Egyptian Journal of Petroleum, 27: 307-317.

40.      Chitra, S., Parameswari, K. and Selvaraj, A. (2010). Dianiline Schiff bases as inhibitors of mild steel corrosion in acid media. International Journal of Electrochemical Science, 5: 1675-1697. 

41.   Ilhem, K., Tahar, D., Djamel, D., Saifi, I., Lakhdar, S. and Salah, C. (2021). Synthesis, characterization and anti-corrosion properties of two new Schiff bases derived from diamino diphenyl ether on carbon steel X48 in 1M HCl. Journal of Adhesion Science and Technology, 35(6): 1-31.

42.   Shirin, S., Sarmin, H., Jahan, B. G., Parviz, N. and Alireza, S. (2019). Synthesis, experimental, quantum chemical and molecular dynamics study of carbon steel corrosion inhibition effect of two Schiff bases in HCl solution. Journal of Molecular Liquid, 285: 626-639.

43.   Deng, X. and Li, X. X. (2014). Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corrosion Science, 80: 276-289.

44.      Uzma, N.Zareen, A.Naveed, Z. A. and Faiz, U. S. (2019). Experimental and theoretical insights into the corrosion inhibition activity of novel Schiff bases for aluminum alloy in acidic medium. RSC Advances, 9: 36455-36470.

45.   Khadraoui, A., Khelifa, M. H., Razika, M., Kamel, H., Tidu, A., Azari, Z., Ime, B. O. and Zarrouk, A. (2016). Extraction, characterization and anti-corrosion activity of Mentha pulegium oil: Weight loss, electrochemical, thermodynamic and surface studies. Journal of Molecular Liquid, 216: 724-731.

46.      Nimmy, K., Joby, T. K., Vinod, P. R. and Shaju, K. S. (2014). Electrochemical impedance spectroscopy and potentiodynamic polarization analysis on anticorrosive activity of thiophene-2-carbaldehyde derivative in acid medium. Indian Journal of Materials Science, 2014: 1-6.

47.   Hamdani, N. E., Fdil, R., Tourabi, M., Jama, C. and Bentiss, F. (2015). Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and surface studies. Applied Surface Science, 357: 1294-1305.

48.      Turuvekere, K. C., Kikkeri, N. S. M. and Harmesh, C. T. (2015). Thermodynamic, electrochemical and quantum chemical evaluation of some triazole Schiff bases as mild steel corrosion inhibitors in acid media. Journal of Molecular Liquid, 211: 1026-1038.

49.      Ragi, K., Joby, T. K., Vinod, P. R., Sini, V. C. and Binsi, M. P. (2019). Synthesis, cyclic voltammetric, electrochemical, and gravimetric corrosion inhibition investigations of schiff base derived from 5,5-dimethyl-1,3-cyclohexanedione and 2-aminophenol on mild steel in 1 M HCl and 0.5 M H2SO4. International Journal of Electrochemistry, 2019: 1-13.

50.      Weihua, L., Qiao, H., Changling, P. and Baorong, H. (2007). Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media.  Electrochimica Acta, 52(22): 6386-6394.

51.   Ifzan, A.Aamer, S.Pervaiz, A. C.Syeda, A. S.Muhammad, N. A. and Muhammad, S. (2020). Bis-Schiff bases of 2,2′-dibromobenzidine as efficient corrosion inhibitors for mild steel in acidic medium. RSC Advances, 10: 4499-4511.

52.   Yadav, M., Kumar, S., Sinha, R. R. and Kumar, S. (2014). Experimental and theoretical studies on synthesized compounds as corrosion inhibitor for mild steel in hydrochloric acid solution. Journal of Dispersion Science and Technology, 35: 1751-1763.

53.   Poorqasemi, E., Abootalebi, O., Peikari, M. and Haqdar, F. (2009). Investigating accuracy of the Tafel extrapolation method in HCl solutions. Corrosion Science, 51: 1043-1054.

54.   Sam, J., Jeevana, R., Aravindakshan, K. K. and Abraham, J. (2017). Corrosion inhibition of mild steel by n(4)-substituted thiosemicarbazone in hydrochloric acid media. Egyptian Journal of Petroleum, 26: 405-412.

55.   Cao, C. (1996). On electrochemical techniques for interface inhibitor research. Corrosion Science, 38 (12): 2073-2082.

56.   Zachariah, P. M., Keerthi, R., Cyril, A., Bincy, J. and Sam, J. (2020). Corrosion inhibition of mild steel using poly (2-ethyl -2-oxazoline) in 0.1M HCl solution. Heliyon, 6(11): 1-8.

57.   Poornima, T., Nayak, J. and Shetty, A. N. (2012). Effect of diacetyl monoxime thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in sulphuric acid solution. Journal of Metallurgy, 2012:  1-13.

58.   Okafor, P. C. and Zheng, Y. (2009). Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corrosion Science, 51: 850-859.

59.   Shukla, S. K. and Quraishi, M. A. (2010). The effects of pharmaceutically active compound doxycycline on the corrosion of mild steel in hydrochloric acid solution. Corrosion Science, 52: 314-321.

60.  Okafor, P. C., Ikpi, M. E., Uwah, I. E., Ebenso, E. E., Ekpe, U. J. and Umoren, S. A. (2008). Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media. Corrosion Science, 50 (8): 2310-2317.

61.   Kassim, K., Kamal, N. K. M. and Fadzil, A. H. (2016). Synthesis, characterization and electrochemical studies of 4-methoxybenzoylthiourea derivatives. Malaysian Journal of Analytical Sciences, 20(6): 1311-1317.

62.   Verma, C., Olasunkanmi, L. O., Obot, I. O., Ebenso, E. E. and Quraishi, M. A. (2016). 5-Arylpyrimido-[4,5-b] quinoline-diones as new and sustainable corrosion inhibitors for mild steel in 1 M HCl: a combined experimental and theoretical approach. RSC Advances, 6(19): 15639-15654.

63.   Sourav, K. S., Alokdut, D., Pritam, G., Dipankar, S. and Priyabrata, B. (2016). Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Physical Chemistry Chemical Physics, 18(27): 17898-17911.

64.   Fouda, A. S., El‑Desoky, H. S., Abdel‑Galeil, M. A. and Dina, M. (2021). Niclosamide and dichlorphenamide: new and effective corrosion inhibitors for carbon steel in 1M HCl solution. SN Applied Sciences, 3(287): 1-20.

65.   Ghulamullah, K., Wan, J. B., Salim, N. K., Pervaiz, A., Ladan, M., Ahmed, S. M., Khan, G. M., Rehman, M. A. and Mohamad Badry, A. B. (2017). Electrochemical investigation on the corrosion inhibition of mild steel by Quinazoline Schiff base compounds in hydrochloric acid solution. Journal of Colloid and Interface Science, 502: 134-145.

66.   Sahin, M., Bilgic, S. and Yilmaz, H. (2002). The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Applied Surface Science, 195(1-4): 1-7.

67.   Nazir, U., Akhter, Z., Janjua, N. K., Asghar, M. A., Kanwal, S., Butt, T. M., Sani, A., Liaqat, F., Hussain, R. and Shah, F. U. (2020). Biferrocenyl Schiff bases as efficient corrosion inhibitors for an aluminium alloy in HCl solution: a combined experimental and theoretical study. RSC Advances, 10: 7585-7599.

68.   Prabakaran, M., Kim, S. H., Hemapriya, V., Gopiraman, M., Kim, I. S. and Chung, I. M. (2016). Rhus vernicifua as a green corrosion inhibitor for mild steel in 1 M H2SO4. RSC Advances, 6(62): 57144-57153.

69.   Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. and Echevarria, A. (2013). Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corrosion Science, 67: 281-291.

70.   Fathabadi, H. E., Ghorbani, M. and Ghartavol, H. M. (2021). Corrosion inhibition of mild steel with tolyltriazole. Materials Research, 24(4): 1-16.

71.   Ehteshamzadeh, M., Jafari, A. H., Naderi, E. and Hosseini, M. G. (2009). Effect of carbon steel microstructures and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by EIS. Materials Chemistry and Physics, 113(2-3): 986-993.

72.   Govindaraju, K. M., Gopi, D. and Kavitha, L. (2009). Inhibiting effects of 4-amino-antipyrine based schiff base derivatives on the corrosion of mild steel in hydrochloric acid. Journal of Applied Electrochemistry, 39: 2345-2352.

73.    Satapathy, A. K., Gunasekaran, G., Sahoo, S. C., Amit, K. and Rodrigues, P. V. (2009). Corrosion inhibition by Justicia gendarussa plant extract in hydrochloric acid solution. Corrosion Science, 51(12): 2848-2856.

74.   Ebenso, E. E., Arslan, T., Kandemirli, F., Caner, N. and Love, I. (2010). Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium. International Journal of Quantum Chemistry, 110(5): 1003-1018.

75.   Solmaz, R. (2010). Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corrosion Science, 52 (10): 3321-3330.

76.   Masahiko, T., Kazushige, I., Yoichi, W., Motohiro, A. and Motomasa, F. (2009). Study of polarization curve measurement method for type 304 stainless steel in BWR high temperature-high purity water. Journal of Nuclear Science and Technology, 46(2): 132-141.

77.   Chakravarthy, M. P., Mohana, K. N. and Pradeep Kumar, C. B. (2014). Behaviour of nicotinamide derivatives on mild steel in hydrochloric acid solution. International Journal of Industrial Chemistry, 5 (19): 1-21.

78.   Lorenz, W. J. and Mansfeld, F. (1982). Determination of corrosion rates by electrochemical DC and AC methods. Corrosion Science, 21(9-10): 647-672.

79.   Youcef, B., Fatiha, B. and Saida, K. (2021). A new corrosion inhibitor for steel rebar in concrete: Synthesis, electrochemical and theoretical studies. Journal of Molecular Structure, 1225: 1-17.

80.   Abdelghani, M., Lakhdar, S., Abdelkader, H., Ilhem, K. and Embarek, B. (2021). Synthesis, density functional theory study, molecular dynamics simulation and anti-corrosion performance of two benzidine Schiff bases. Journal of Molecular Structure, 1235: 1-15.

81.   Merah, S., Larabi, L., Abderrahim, O. and Harek, Y. (2017). Study of corrosion inhibition of C38 steel in 1 M HCl solution by polyethyleneiminemethylene phosphonic acid. International Journal of Industrial Chemistry, 8: 263-272.

82.   Xifeng, Y.Feng, L. and Weiwei, Z. (2019). 4-(Pyridin-4-yl) thiazol-2-amine as an efficient non-toxic inhibitor for mild steel in hydrochloric acid solutions. RSC Advances, 9: 10454-10464.

83.   Laabaissi, T., Benhiba, F., Missioui, M., Rouifi, Z., Rbaa, M., Oudda, H., Ramli, Y., Guenbour, A., Warad, I. and Zarrouk, A. (2020). Coupling of chemical, electrochemical and theoretical approach to study the corrosion inhibition of mild steel by new quinoxaline compounds in 1 M HCl. Heliyon, 6(5): 1-15.

84.   Quy, H. D., Tran, D. and Nam, P. C. (2021). A Study of 1-benzyl-3-phenyl-2-thiourea as an effective steel corrosion inhibitor in 1.0 M HCl Solution. Journal of Chemistry, 2021: 1-14.

85.   Parul, D., Quraishi, M. A. and Obot, I. B. (2018). A combined electrochemical and theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. Journal of Chemical Sciences, 130(8): 1-19.

86.   Kumari, P. P., Shetty, P. and Rao, S. A. (2017). Electrochemical measurements for the corrosion inhibition of mild steel in 1 M hydrochloric acid by using an aromatic hydrazide derivative. Arabian Journal of Chemistry,10(5): 653-663.

87.   Maryam, C., Abdelkarim, C., Hassane, L., Rachid, S., Santosh, L. G., Bhat, K. S., Riadh, M., Ismat, H. A., Mohammad, I. K., Hiroki, S. and Ill-Min, C. (2020). Synthesis and corrosion inhibition evaluation of a new schiff base hydrazone for mild steel corrosion in HCl medium: electrochemical, DFT, and molecular dynamics simulations studies. Journal of Adhesion Science and Technology, 34(12): 1283-1314.

88.   Zhenzhen, Z., Min, S., Yiming, J., Li, L. and Jin, L. (2016). Effect of tin on the corrosion resistance of 16 Cr ferritic stainless steel in acidic solution and chloride-containing media. International Journal of Electrochemical Science, 11: 3963-3975.

89.   Zesheng, C., Zheng, L., Kun-Huan, H., Guo-Cheng, H., Yiju, L., Jiaxing, H. and Xianmei, W. (2021). Two diamine Schiff base as a corrosion inhibitor for carbon steel in sulfuric acid solution: Electrochemical assessment and theoretical calculation. International Journal of Electrochemical Science, 16: 1-21.

90.   Al-Amiery, A. A., Kassim, F. A., Kadhum, A. A. H. and Mohamad, A. B. (2016). Synthesis and characterization of a novel eco-friendly corrosion inhibition for mild steel in 1 M hydrochloric acid. Scientific Reports, 6: 1-13.

91.   Negm, N. A., Kandile, N. G., Badr, E. A. and Mohammed, M. A. (2012). Gravimetric and electrochemical evaluation of environmentally friendly nonionic corrosion inhibitors for carbon steel in 1 M HCl. Corrosion Science, 65: 94-103.

92.   Narvaez, L., Cano, E. and Bastidas, D. M. (2005). 3-Hydroxybenzoic acid as AISI 316L stainless steel corrosion inhibitor in a H2SO4–HF–H2O2 pickling solution. Journal of Applied Electrochemistry, 35: 499-506.

93.   Ozkır, D., Kayakırılmaz, K., Bayol, E., Gürten, A. A. and Kandemirli, F. (2012). The inhibition effect of Azure A on mild steel in 1 M HCl. A complete study: Adsorption, temperature, duration and quantum chemical aspects. Corrosion Science, 56: 143-152.

94.   Agrawal, R. and Namboodhiri, T. K. G. (1990). The inhibition of sulphuric acid corrosion of 410 stainless steel by thioureas. Corrosion Science, 30(1): 37-52.

95.   Zhao, T. P. and Mu, G. N. (1999). The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid. Corrosion Science, 41: 1937-1944.

96.   Yaro, A. S., Khadom, A. A. and Ibraheem, H. F. (2011). Peach juice as an anticorrosion inhibitor of mild steel. Anti-Corrosion Methods and Materials, 58(3): 116-124.

97.   Hegazy, M. A., Hasan, A. M., Emara, M. M., Bakr, M. F. and Youssef, A. H. (2012). Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid. Corrosion Science, 65: 67-76.

98.   Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. and Echevarria, A. (2013). Experimental and theoretical evaluation of semicarbazones and thiosemicarbazones as organic corrosion inhibitors. Corrosion Science, 67 (3): 281-291.

99.   Muthukrishnan, P., Jeyaprabha, B. and Prakash, P. (2017). Adsorption and corrosion inhibiting behavior of Lannea coromandelica leaf extract on mild steel corrosion. Arabian Journal of Chemistry, 10: 2343-2354.

100. Adewuyi, A., Gopfert, A. and Wolf, T. (2014). Succinyl amide gemini surfactant from Adenopus breviforus seed oil: A potential corrosion inhibitor of mild steel in acidic medium. Industrial Crops and Products, 52: 439-449.

101. Ji, G., Shukla, S. K., Dwivedi, P., Sundaram, S. and Ebenso, E. E. (2012). Green Capsicum annuum fruit extract for inhibition of mild steel corrosion in hydrochloric acid solution. International Journal of Electrochemical Science, 7: 12146-12158.

102. Gopiraman, M., Selvakumaran, N., Kesavan, D. and Karvembu, R. (2012). Adsorption and corrosion inhibition behaviour of N-(phenylcarbamothioyl) benzamide on mild steel in acidic medium. Progress in Organic Coatings, 73 (1): 104-111.

103. Ahamad, I., Prasad, R. and Quraishi, M. A. (2010). Inhibition of mild steel corrosion in acid solution by Pheniramine drug: experimental and theoretical study. Corrosion Science, 52 (9): 3033-3041.

104. Fazayel, A. S., Khorasani, M. and Sarabi, A. A. (2018). The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution. Applied Surface Science, 441: 895-913.

105. Singh, A. K. and Quraishi, M. A. (2010). Inhibiting Effects of 5-Substituted Isatin-Based Mannich Bases on the Corrosion of Mild Steel in Hydrochloric Acid Solution. Journal of Applied Electrochemistry, 40 (7): 1293-1306.

106. Yurt, A., Bereket, G., Kivrak, A., Balaban, A. and Erk, B. (2005). Effect of Schiff bases containing pyridyl group as corrosion inhibitors for low carbon steel in 0.1 M HCl. Journal of. Applied Electrochemistry, 35:  1025-1032.

107. Saliyan, V. R. and Adhikari, A. V. (2008). Quinolin-5-ylmethylene-3-{[8-(trifluoromethyl)quinolin-4-yl] thio}propanohydrazide as an effective inhibitor of mild steel corrosion in HCl solution. Corrosion Science, 50 (1): 55-61.

108. Deyab, M. A. (2015). Egyptian licorice extract as a green corrosion inhibitor for copper in hydrochloric acid solution. Journal of Industrial and Engineering Chemistry, 22: 384-389.

109. Abd El-Lateef, H. M., Abu-Dief, A. M., Abdel-Rahman, L. H., Sanudo, E.  C. and Aliaga-Alcalde, N. (2015). Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. Journal of Electroanalytical Chemistry, 743: 120-133.

110. Sigircik, G., Tuken, T. and Erbil, M. (2015). Inhibition effectiveness of aminobenzonitrile compounds on steel surface. Applied Surface Science, 324: 232-239.

111. Kowsari, E., Payami, M., Amini, R., Ramezanzadeh, B. and Javanbakht, M. (2014). Task-specific ionic liquid as a new green inhibitor of mild steel corrosion. Applied Surface Science, 289: 478-486.

112. Zhang, H. H., Qin, C. K., Chen, Y. and Zhang, Z. (2019) Inhibition behaviour of mild steel by three new benzaldehyde thiosemicarbazone derivatives in 0.5 M H2SO4: Experimental and computational study. Royal Society Open Science, 6(8): 1-19.