Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 855 - 866

 

 

 

 

APPLICATIONS OF NINHYDRIN: SPECTROPHOTOMETRIC DETERMINATION OF HYDRAZINE AND HYDROXYLAMINE

 

(Aplikasi Ninhidrin: Penentuan Spektrofotometri bagi Hidrazin dan Hidroksil Amina)

 

Khaled Elgendy*, Mohamed Alaa Eldeen Elmosallamy, Mohamed Hassan, Hend Gamal

 

Department of Chemistry, Faculty of Science,

Zagazig University, Egypt

 

*Corresponding author:  elgendykh64@gmail.com

 

 

Received: 15 September 2021; Accepted: 18 May 2022; Published: 25 August 2022

 

Abstract

A rapid, accurate, and sensitive spectrophotometric method for the determination of micro amounts of hydroxylamine and hydrazine is described. The proposed method is based on the interaction of ninhydrin with the amino group of hydroxylamine and hydrazine. Hydroxylamine reacted with ninhydrin as a chromogenic reagent in phosphate buffer at pH 9.14, forming a violet complex with a maximum absorbance at 375 nm after heating for 10 min at 70 °C. Hydrazine reacted with ninhydrin upon heating for 10 min at 85 °C in the presence of phosphate buffer (pH 9), giving a red-brown complex with a maximum absorbance at 425 nm. The optimum conditions affecting the method, such as pH and buffer, sequence of addition, time, temperature, organic solvent, and surfactant, were studied. The complexes of ninhydrin with hydroxylamine and hydrazine were formed in a molar ratio of 1:2. The hydroxylamineninhydrin and hydrazineninhydrin complexes obeyed Beer's law in a concentration range of 0.033-3.3 and 0.130-3.25 µg mL−1, respectively. Molar absorptivity and Sandell's sensitivity were 0.21508 × 102 L mol−1 cm−1 and 1.53 µg cm−2, respectively, for hydroxylamine and 0.8583 × 102 L mol−1 cm−1 and 1.51 µg cm−2, respectively, for hydrazine. The limit of detection and quantification was calculated. The interference effect of various foreign ions and substances was also studied. The proposed method was applied for the determination of micro amounts of hydroxylamine in urine and tap water and hydrazine in tap water.

Keywords:  spectrophotometric method, ninhydrin, hydroxylamine, hydrazine, urine

 

Abstrak

Kaedah spektrofotometri yang cepat, tepat dan sensitif untuk penentuan jumlah mikro hidroksilamin dan hidrazin diterangkan. Kaedah yang dicadangkan adalah berdasarkan interaksi ninhidrin dengan kumpulan amino yang terdapat dalam hidroksilamin dan hidrazin. Hidroksilamin bertindak balas dengan ninhidrin sebagai reagen kromogenik dalam medium beralkali pada pH = 9.14 menggunakan penimbal fosfat membentuk kompleks ungu dengan penyerapan maksimum pada 375 nm selepas dipanaskan selama 10 minit pada 70 °C. Hidrazin bertindak balas dengan ninhidrin apabila dipanaskan selama 10 minit pada 85 °C dengan kehadiran penimbal fosfat (pH = 9) memberikan kompleks merah-coklat dengan penyerapan maksimum pada 425 nm. Keadaan optimum yang mempengaruhi kaedah dikaji seperti pH dan penimbal, jujukan penambahan, masa, suhu, pelarut organik, dan surfaktan. Dua kompleks yang terbentuk bagi ninhidrin dengan hidroksilamin dan hidrazin terbentuk dengan nisbah molar (1:2). Kompleks hidroksilaminninhidrin dan hidrazinninhidrin mematuhi hukum Beer dalam julat kepekatan 0.033-3.3 dan 0.130-3.25 µg mL−1, masing-masing. Penyerapan molar dan kepekaan Sandell masing-masing ialah 0.21508 × 102 L mol−1 cm−1 dan 1.53 µg cm−2, untuk hidroksilamin dan 0.8583 × 102 L mol−1 cm−1 dan 1.51 µg cm−2 masing-masing, untuk hidrazin. Had pengesanan dan kuantifikasi telah dikira. Kesan gangguan pelbagai ion dan bahan asing turut dikaji. Kaedah yang dicadangkan digunakan untuk penentuan jumlah mikro hidroksilamin dalam air kencing dan air paip dan hidrazin dalam air paip

Kata kunci:  kaedah spektrofotometri, ninhidrin, hidroksilamin, hidrazin, urin

 

 

Graphical Abstract



References

1.      Rahman, N. and Kashif, M. (2003). Application of ninhydrin to spectrophotometric determination of famotidine in drug formulations. Il Farmaco, 58(10): 1045-1050.

2.      Mahmood, K., Wattoo, F. H., Wattoo, M. H. S., Imran, M., Asad, M. J., Tirmizi, S. A. and Wadood, A. (2012). Spectrophotometric estimation of cobalt with ninhydrin. Saudi Journal of Biological Sciences, 19(2): 247-250.

3.      Friedman, M. (2004). Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agriculture and Food Chemistry, 52(3): 3854-3806.

4.      Surleva, A., Zaharia, M., Ion, L., Gradinaru, R. V., Drochioiu, G. and Mangalagiu, I. (2013). Ninhydrin-based spectrophotometric assays of trace cyanide. Acta Chemica Iasi, 21: 57-70.

5.      Alsamarrai, K. F., Al-Abbasi, M. A. and Alsamarrai, E. T. (2019). Spectrophotometric determination of neomycin sulphate in tablets form via reaction with ninhydrin reagent. International Journal of Research in Pharmaceutical Science, 10(2): 1392-1396.

6.      Siddiquia, F. A., Araynea, M. S., Sultanab, N., Qureshia, F., Mirzaa, A. Z., Zuberia, M. H., Bahadura, S. S., Afridia, N. S., Shamshadb, H. and Rehman, N. (2010). Spectrophotometric determination of gabapentin in pharmaceutical formulations using ninhydrin and -acceptors. European Journal of Medicinal Chemistry, 45: 2761-2767.

7.      Rahman, N. and Azmi, S. N. H. (2001). Spectrophotometric method for the determination of amlodipine besylate with ninhydrin in drug formulations. Il Farmaco, 56: 731-735.

8.      Bhaskara, B. L. and Nagaraja, P. (2006). Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helvetica Chimica Acta, 89: 2686-2693.

9.      Baker, H. M. and Alzboon, K. F. (2015). Spectrophotometric determination of ammonia using ninhydrin assay and kinetic studies. European Journal of Chemistry, 6(2): 135-140.

10.   Arp, D. J., Stein, L. Y. (2003). Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Critical Reviews in Biochemistry and Molecular Biology, 38(6): 471-495.

11.   Jetten, M. S. M. (2001). New pathways for ammonia conversion in soil and aquatic systems. Plant and Soil, 230: 9-19.

12.   Guzowski Jr, J. P., Golanoski, C. and Montgomery, E. R. (2003). A gas chromatographic method for the indirect determination of hydroxylamine in pharmaceutical preparations, conversion into nitrous oxide. Journal of Pharmaceutical and Biomedical Analysis, 33(5): 963-974.

13.   Smith, R. P., and Layne, W. R. (1969). A comparison of the lethal effects of nitrite and hydroxylamine in the mouse. Journal of Pharmacology and Experimental Therapeutics, 165: 30-35.

14.   Deepa, B., Balasubramanian, N. and Nagaraja, K. S. (2004). Spectrophotometric determination of hydroxylamine and its derivatives in pharmaceuticals. Chemical and Pharmaceutical Bulletin, 52(12): 1473-1475.

15.   Hu, B., Tian, X. L., Shi, W. N., Zhao, J. Q., Wu, P. and Mei, S. T. (2018). Spectrophotometric determination of hydroxylamine in biological wastewater treatment processes. International Journal of Environmental Science and Technology, 15: 323-332.

16.   Afkhami, A., Madrakian, T. and Maleki, A. (2006). Indirect kinetic spectrophotometric determination of hydroxylamine based on its reaction with iodate. Analytical Sciences, 22: 329-331.

17.   Afkhami, A., Madrakian, T. and Maleki, A. (2005). Spectrophotometric determination of hydroxylamine and nitrite in mixture in water and biological samples after micelle-mediated extraction. Analytical Biochemistry, 347: 162-164.

18.   Guzowski, J. P., Golanoski, C. and Montgomery, E. R. (2003). A gas chromatographic method for the indirect determination of hydroxylamine in pharmaceutical preparations, conversion into nitrous oxide. Journal of Pharmaceutical and Biomedical Analysis, 33(5): 963-974.

19.   Ardakani, M. M., Beitollahi, H., Taleat, Z. and Naeimi, H. (2010). Voltammetric determination of hydroxylamine at the surface of a quinizarine/TiO2 nanoparticles-modified carbon paste electrode. Analytical Methods, 2: 1764-1769.

20.   Reddy, A. V. B., Venugopal, N. and Madhavi, G. (2014). A selective and sensitive LC-MS/MS method for the simultaneous determination of two potential genotoxic impurities in celecoxib. Journal of Analytical Science and Technology, 5(18): 1-8.

21.   Kaveeshwar, R. and Gupta, V. K. (1992). A new spectrophotometric method for the determination of hydrazine in environmental samples. Fresenius Journal of Analytical Chemistry, 344: 114-117.

22.   Majeed, S. Y. and Bashir, W. A. (2019). Spectrophotometric determination of hydrazine sulphate using Fe (ii)-2,2'-bipyridyl-application to various water samples. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 7: 23-32.

23.   Mitic, V. D., Nikolic, S. D. and Jovanovic, V. P. S. (2010). Kinetic spectrophotometric determination of hydrazine. Central European Journal of Chemistry, 8(3): 559-565.

24.   Kosyakov, D. S., Amosov, A. S., Ul’yanovskii, N. V., Ladesov, A. V., Khabarov, Yu. G. and Shpigun, O. A. (2017). Spectrophotometric determination of hydrazine, methylhydrazine, and 1, 1–dimethylhydrazine with preliminary derivatization by 5–nitro-2–furaldehyde. Journal of Analytical Chemistry, 2: 171-177.

25.   Yu, L., Zhang, X. and Yu, L. (2012). Flow injection spectrophotometric determination of hydrazine in environmental water samples. Advanced Materials Research, 396–398: 130-133.

26.   Britton, H. T. S. (1952). Hydrogen ions, 4th edition, Chapman and Hall, 28: pp. 359-364.

27.   Bower and Bates (1955). pH values of the Clark and Lubs buffer solutions at 25 °C. Journal of Research of the National Bureau of Standards, 55: 197-202.

28.   Lurie, J. U. (1978); Handbook of Analytical Chemistry, 2nd edition, Mir Publishers, Moscow.

29.   Yoe, J. H. and Jones, A. L. (1944); Colorimetric determination of Fe with disodium 1, 2-dihydroxybenzene-3, 5-disulfonate, Industrial Engineering Chemistry, 16: 111-118.

30.   Job, P. (1928). Formation and stability of inorganic complexes in solution, Analytical Chemistry, 9: 113-119.

31.   Watt, G. W. and Chirsp, J. D. (1952). Spectrophotometric method for determination of hydrazine, Analytical Chemistry, 24(12): 2006-2008.

32.   Frear, D. S. and Burrell, R. C. (1955). Spectrophotometric method for determining hydroxylamine reductase in higher plants. Analytical Chemistry, 27(10): 1664-1665.