Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 845 - 854

 

 

 

 

ASSESSMENT OF METALS IN SEDIMENT OF A MONSOON-DOMINATED REGION IN THE NORTHERN MALACCA STRAIT

 

(Penilaian Logam dalam Sedimen di Wilayah yang Didominasi Monsun di Utara Selat Melaka)

 

Mohamad Arif Che Abd Rahim1, Shengfa Liu2,3, Xuefa Shi2,3, Che Abd Rahim Mohamed1*

 

1Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Key Laboratory of Marine Geology and Metallogeny,

First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China

3Laboratory for Marine Geology,

Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

 

*Corresponding author:  carmohd@ukm.edu.my

 

 

Received: 23 March 2022; Accepted: 18 May 2022; Published: 25 August 2022

 

 

Abstract

Fluctuation levels of geochemical elements, sediment texture and nutrients were analysed from five surface sediments taken from the northern Malacca Straits. These samples were obtained during the RV Discovery Scientific cruises in September 2017 and April 2018, to assess pollution sources during monsoonal events. The results show a high output of clay and silt, revealing that the monsoonal season and cross-shelf inputs affect textural sediment. On the other hand, fluctuations in geochemical concentrations are due to industrialisation and urbanisation along the Malacca Straits, contributed by the local drainage basin. The presence of the monsoon also affects the diffusivity and absorption between the water-sediment interfaces, leading to constant fluctuation along the straits. Principal Component Analysis (PCA) of the association between the geochemical elements, sediment texture and nutrients reveal hydrological factors, mobility and accumulation through the sediment interface.

 

Keywords:  weathering, pollution, monsoon, sediment, Malacca Strait

 

Abstrak

Tahap kepekatan unsur geokimia, tekstur sedimen dan nutrien telah dianalisis daripada lima sedimen permukaan yang diambil dari kawasan utara Selat Melaka. Sampel ini diperoleh semasa pelayaran RV Discovery Scientific pada September 2017 dan April 2018 untuk menilai sumber pencemaran semasa peristiwa monsun. Keputusan menunjukkan keluaran lempung dan kelodak yang lebih tinggi, menunjukkan bahawa musim monsun dan input rentas pelantar mempengaruhi sedimen tekstur. Sebaliknya, fluktuasi kepekatan geokimia adalah disebabkan oleh kawasan perindustrian dan pembandaran di sepanjang Selat Melaka, disumbangkan oleh lembangan saliran tempatan. Kehadiran monsun juga menjejaskan resapan dan penyerapan antara antara muka air-mendapan, yang membawa kepada fluktuasi yang berterusan di sepanjang selat. Analisis Komponen Utama (PCA) perkaitan antara unsur geokimia tekstur sedimen dan nutrien mendedahkan faktor hidrologi, mobiliti dan pengumpulan melalui antara muka sedimen.

 

Kata kunci:  luluhawa, pencemaran, monsun, sedimen, Selat Melaka

 

 


Graphical Abstract

 

 

References

1.    Thia-Eng, A., Gorre, I. R. L., Ross, S. A., Bernad, S. R., Gervacio, B. and Ebarvia, C. (2000). The Malacca straits. Marine Pollution Bulletin, 41: 160-178.

2.    Liu, Z., Wang, H., Hantoro, W.S., Sathiamurthy, E., Colin, C., Zhao, Y. and Li, J. (2012). Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chemical Geology, 291: 1-12.

3.    Haditiar, Y., Putri, M.R., Ismail, N., Muchlisin, Z.A., Ikhwan, M. and Rizal, S. (2020). Numerical study of tides in the Malacca Strait with a 3-D model. Heliyon, 6(9): e04828.

4.    Tan, C.K., Ishizaka, J., Matsumura, S., Yusoff, F.M., and Mohamed, M.I.H. (2006). Seasonal variability of SeaWiFS chlorophyll a in the Malacca Straits in relation to Asian monsoon. Continental Shelf Research, 26(2): 168-178.

5.    Fujita, M., Kimura, F. and Yoshizaki, M. (2010). Morning precipitation peak over the strait of Malacca under a calm condition. Monthly Weather Review, 138(4): 1474-1486.

6.    Amin, M. Z. M., Shaaban, A. J., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q. and Jang, S. (2017). Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 575: 12-22.

7.    Yusoff, A. H., and Mohamed, C. A. R. (2016). Mini review uranium-thorium decay series in the marine environment of the Southern South China Sea. Journal of Geology & Geophysics, 5(03): 1-9.

8.    Schwartz, M. O., Rajah, S. S., Askury, A. K., Putthapiban, P. and Djaswadi, S. (1995). The Southeast Asian tin belt. Earth Science Reviews, 38(2–4): 95-293.

9.    Shoieb, M. A., Sum, C. W., Ismail, M. S., and Tsegab, H. (2019). Geological characteristic of the Kroh formation in the upper Perak shales, western Peninsula Malaysia. International Journal of Advanced and Applied Sciences, 6(2): 102-106.

10.  Zakariah, M. N. A., Roslan, N., Sulaiman, N., Lee, S. C. H., Hamzah, U., Noh, K. A. M. and Lestari, W. (2021). Gravity analysis for subsurface characterization and depth estimation of Muda River basin, Kedah, Peninsular Malaysia. Applied Sciences, 11(14): 6363.

11.  Abdul Hamid, F. A. Z., Abu Bakar, A. F., Ng, T. F., Ghani, A. A. and Mohamad Zulkifley, M. T. (2019). Distribution and contamination assessment of potentially harmful elements (As, Pb, Ni, Cd) in top soil of Penang Island, Malaysia. Environmental Earth Sciences, 78(21): 1-13.

12.  Khandaker, M. U., Asaduzzaman, K., Sulaiman, A. F. Bin, Bradley, D. A. and Isinkaye, M.O. (2018). Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Marine Pollution Bulletin, 127 (12): 654-663.

13.  Aboobacker, V. M. (2017). Wave energy resource assessment for eastern Bay of Bengal and Malacca Strait. Renewable Energy, 114 (3): 72-84.

14.  Redzwan, G., Halim, H. A., Alias, S. A. and Rahman, M. M. (2014). Assessment of heavy metal contamination at west and east coastal area of Peninsular Malaysia. Malaysian Journal of Science, 33 (1): 23-31.

15.  Saili, N. A. B. and Mohamed, C. A. R. (2021). Natural radioactivity of 210Pb in mussels at the semi-enclosed water of the johor strait, malaysia through statistical approach. Malaysian Journal of Analytical Sciences, 25(1): 166-183.

16.  Rahim, M. A. C. A., Aproi, A. A., Shi, X., Liu, S., Ali, M. M., Yaacob, W. Z. W. and Mohamed, C. A. R. (2019). Distribution of chromium and gallium in the total suspended solid and surface sediments of sungai kelantan, kelantan, Malaysia. Sains Malaysiana, 48(11): 2343-2353.

17.  Miller, W. P. and Miller, D. M. (1987). A micro‐pipette method for soil mechanical analysis. Communications in Soil Science and Plant Analysis, 18(1): 1-15.

18.  Miller, W. P. (1993). A micro-pipette method for water dispersible clay. Communications in Soil Science and Plant Analysis, 24 (19–20): 2531-2544.

19.  Kaur, A. and Fanourakis, G. C. (2018). Effect of sodium carbonate concentration in calgon on hydrometer analysis results. Periodica Polytechnica Civil Engineering, 62(4): 866-872.

20.  Gray, J. E. and Riehle, J. R. (1998). Geologic Studies in Alaska by the US Geological Survey 1998:  200.

21.  Santisteban, J. I., Mediavilla, R., López-Pamo, E., Dabrio, C.J., Blanca Ruiz Zapata, M., José Gil García, M., Castańo, S. and Martínez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32(3): 287-299.

22.  Othman, S. Z., Adlan, M. N., and Selamat, M. R. (2015). A study on the potential of riverbank filtration for the removal of color, iron, turbidity and E. Coli in Sungai Perak, Kota Lama Kiri, Kuala Kangsar, Perak, Malaysia. Jurnal Teknologi, 74(11): 83-91.

23.  Ramaswamy, V., Rao, P. S., Rao, K. H., Thwin, S., Rao, N. S. and Raiker, V. (2004). Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Marine Geology, 208(1): 33-42.

24.  Rizal, S., Damm, P., Wahid, M. A., Sündermann, J., Ilhamsyah, Y., Iskandar, T. and Muhammad (2012). General circulation in the Malacca Strait and Andaman Sea: A numerical model study. American Journal of Environmental Sciences, 8(5): 479-488.

25.  Mohamed, K. N., Godon, E., Adnan, N. A., Rahim, Q. A., Liew, C., Abidin, A. I. Z. and Zainuddin, M. F. (2019). Study of dissolved nutrient condition at pulau perhentian, Terengganu. Pertanika Journal of Science and Technology, 27(2): 601-617.

26.  Shaari, H., Mohamad Azmi, S. N. H., Sultan, K., Bidai, J. and Mohamad, Y. (2015). Spatial distribution of selected heavy metals in surface sediments of the EEZ of the East Coast of Peninsular Malaysia. International Journal of Oceanography, 2015(5): 1-10.

27.  Rezai, H., Yusoff, F. M., Kawamura, A., Arshad, A. and Othman, B. H. R. (2003). Zooplankton biomass in the Straits of Malacca. Indian Journal of Marine Sciences, 32(3): 222-225.

28. Kok, P. H., Mohd Akhir, M. F., Tangang, F. and Husain, M. L. (2017). Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea. PLOS ONE, 12(2): e0171979.

29.  Schroeder, A., Wiesner, M. G. and Liu, Z. (2015). Fluxes of clay minerals in the South China Sea. Earth and Planetary Science Letters, 430: 30-42.

30.   Väli, G., Zhurbas, V., Laanemets, J. and Elken, J. (2011). Simulation of nutrient transport from different depths during an upwelling event in the Gulf of Finland. Oceanologia, 53(1-TI): 431-448.

31.   Haditiar, Y., Putri, M. R., Ismail, N., Muchlisin, Z. A. and Rizal, S. (2019). Numerical simulation of currents and volume transport in the Malacca Strait and part of South China Sea. Engineering Journal, 23(6): 129-143.

32.  Batista, A. H., Melo, V. F., Gilkes, R. and Roberts, M. (2018). Identification of heavy metals in crystals of sand and silt fractions of soils by scanning electron microscopy (SEM EDS/WD-EPMA). Revista Brasileira de Ciencia do Solo, 42: 1-16.

33.  Singh, S.K. and Subramanian, V. (1984). Hydrous fe and mn oxides — scavengers of heavy metals in the aquatic environment. Critical Reviews in Environmental Control, 14(1): 33-90.

34.  Taylor, K. G. and Macquaker, J. H. S. (2014). Diagenetic alterations in a silt- and clay-rich mudstone succession: an example from the Upper Cretaceous Mancos Shale of Utah, USA. Clay Minerals, 49(2): 213-227.

35.  Raj, J. K. (2021). Soil moisture retention characteristics of saprock from the weathering profile over a biotite-muscovite granite in Peninsular Malaysia. Warta Geologi, 47(3): 217-225.

36.  Yap, C. K. and Pang, B. H. (2011). Assessment of Cu, Pb, and Zn contamination in sediment of north western Peninsular Malaysia by using sediment quality values and different geochemical indices. Environmental Monitoring and Assessment, 183(1–4): 23-39.

37.  Pitt, R., Lantrip, J. and O’Connor, T. P. (2004). Infiltration through disturbed urban soils. Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000: Building Partnerships: p. 104.

38.  Bobrowsky, P. T. and Marker, B. (2018). Encyclopedia of Engineering Geology, Springer International Publishing AG, Cham, Switzerland.

39.  Zorluer, I., Icaga, Y., Yurtcu, S. and Tosun, H. (2010). Application of a fuzzy rule-based method for the determination of clay dispersibility. Geoderma, 160(2): 189-196.

40.  Ismail, A., Toriman, M. E., Juahir, H., Zain, S. M., Habir, N. L. A., Retnam, A., Kamaruddin, M. K. A., Umar, R., and Azid, A. (2016). Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques. Marine Pollution Bulletin, 106(1–2): 292-300.

41.  Idriss, A. A. (2012). Concentration of selected heavy metals in water of the Juru River, Penang, Malaysia. African Journal of Biotechnology, 11(33): 8234-8240.