Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 838 - 844

 

 

 

 

STRUCTURAL AND ELECTROCHEMICAL CHARACTERISATIONS OF LANTHANUM-BASED COBALT FERRITE AND BARIUM CERATE-ZIRCONATE OXIDES AS COMPOSITE CATHODE FOR PROTON CERAMIC FUEL CELL 

 

(Pencirian Struktur dan Elektrokimia Lantanum Berasaskan Kobalt Ferum Oksida dan Barium Serat-Zirkonat Oksida Sebagai Komposit Katod untuk Aplikasi Sel Fuel Seramik Proton)

 

Nurul Izzati Abd Malek1, Ismariza Ismail2, Abdul Mutalib Md Jani3, Mohd Hafiz Dzarfan Othman4, Nafisah Osman1,5*

 

1Proton Conducting Fuel Cell Research Group, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Engineering Technology,

Universiti Malaysia Perlis, 02100 Padang Besar, Perlis, Malaysia

3Faculty of Applied Sciences,

Universiti Teknologi MARA, 35400 Tapah Road, Tapah, Perak, Malaysia

4Advanced Membrane Technology Research Centre (AMTEC), School of Chemical & Energy Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia

5Faculty of Applied Sciences,

Universiti Teknologi MARA Perlis, 02600 Arau, Perlis, Malaysia

 

*Corresponding author:  fisha@uitm.edu.my

 

 

Received: 12 September 2021; Accepted: 12 July 2022; Published: 25 August 2022

 

 

Abstract

This study investigated the composite cathode ofLaSrCoFeO3-BaCeZrYO3 (LSCF-BCZY) in a ratio of 7 : 3. A 13-mm symmetrical half-cell was fabricated using the dry pressing and spin-coating techniques to yield the configuration of  LSCF-BCZY|BCZY|LSCF-BCZY. The phase of the sample was verified using the X-Ray Diffraction (XRD) spectroscopy. The electrochemical and microstructure of the half-cell were characterized using the Electrochemical Impedance Spectroscopy and Scanning Electron Microscopy (SEM), respectively. The XRD analysis showed that the single-phase  structure of LSCF and BCZY was still preserved at the calcination temperature of 900 oC. The half-cell demonstrated a thermally activated trend in a humidified atmosphere with area-specific resistance values of 0.25, 0.33, 1.02, 1.64, and 5.75 Ω.cm2 at temperatures of 800, 750, 700, 650, and 600 oC, respectively. The SEM image revealed that the 10-μm LSCF-BCZY layer was well-adhered on the dense BCZY electrolyte surface. This synthesised LSCF-BCZY in the ratio of 7 : 3 demonstrated excellent characteristics as a composite cathode for PCFCs.

Keywords:  composite cathode, single phase, spin coating, proton ceramic fuel cells

 

Abstrak

Dalam kajian ini, komposit katod daripada LaSrCoFeO3-BaCeZrYO3 (LSCF-BCZY) dengan nisbah 7 : 3 dipilih disebabkan kelebihanya berbanding dengan LSCF tulen. Teknik penekanan kering dan saduran berpusing telah digunakan untuk menghasilkan 13-mm sel separa simetri dengan konfigurasi iaitu LSCF-BCZY|BCZY|LSCF-BCZY. Pembentukan fasa sampel telah disahkan oleh pembelauan sinar-X (XRD). Sifat elektrokimia dan struktur mikro daripada sel separa simetri masing-masing telah diciri menggunakan spektroskopi impedans elektrokimia (EIS) dan pengimbasan mikroskop elektron (SEM). Pada suhu kalsinan 900 oC, komponen LSCF dan BCZY tidak menunjukkan sebarang perubahan dan berfasa tunggal seperti dibuktikan melalui analisis XRD. Sel ini menunjukkan kecenderungan aktif secara terma, yang disahkan melalui pengukuran EIS dalam atmosfera lembap dengan kawasan rintangan khusus (ASR) masing-masing iaitu 0.25, 0.33, 1.02 , 1.64, dan 5.75 Ω.cm2 pada suhu 800, 750, 700, 650 dan 600 oC. Gambar SEM menunjukkan bahawa lapisan 10 μm LSCF-BCZY melekat dengan baik pada permukaan elektrolit padat BCZY. Maka, penghasilan LSCF-BCZY dengan nisbah 7 : 3 menunjukkan ciri-ciri yang terbaik sebagai katod komposit bagi aplikasi PCFC.

Kata kunci:  katod komposit, fasa tunggal, saduran berpusing, sistem sel fuel seramik proton

 


Graphical Abstract

 

 

 

References

1.      He, W., Yuan, R. H., Dong, F. F., Wu, X. L. and Ni, M. (2017). High performance of protonic solid oxide fuel cell with BaCo0. 7Fe0. 22Sc0. 08O3− δ electrode. International Journal of Hydrogen Energy, 42(39): 25021-25025.

2.      Chen, J., Li, J., Jia, L., Moussa, I., Chi, B., Pu, J. and Li, J. (2019). A novel layered perovskite Nd (Ba0.4Sr0.4Ca0.2) Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources, 428: 13-19.

3.      Fang, X., Zhu, J. and Lin, Z. (2018). Effects of electrode composition and thickness on the mechanical performance of a solid oxide fuel cell. Energies, 11(7): 1735.

4.      Osman, N., Ismail, I., Samat, A. A. and Md Jani, A. M. (2016). Reactivity study of LaSrCoFeO3-Ba (Ce, Zr) O3 composite cathode material. In Materials Science Forum, 846: pp. 58-62.

5.      Ismail, I., Osman, N. and Jani, A. M. M. (2018). Evaluation of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ as a potential cathode for proton-conducting solid oxide fuel cell. Sains Malaysiana, 47(2): 387-391.

6.      Matsui, T., Kunimoto, N., Manriki, K., Miyazaki, K., Kamiuchi, N., Muroyama, H. and Eguchi, K., 2021. Oxygen reduction reaction over (Ba, Sr)6RE2Co4O15–Ba(Ce,Pr,Y)O3 composite cathodes for proton-conducting ceramic fuel cells. Journal of Materials Chemistry A, 9(27): 15199 15206.

7.      Loureiro, F. J., Ramasamy, D., Mikhalev, S. M.,       Shaula, A. L., Macedo, D. A. and Fagg, D. P.(2021). La4Ni3O10±δ–BaCe0.9Y0.1O3-δ cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0. 9Y0. 1O3-δ symmetric cells. International Journal of Hydrogen Energy, 46(25): 13594-13605.

8.      Song, Y., Chen, Y., Wang, W., Zhou, C., Zhong, Y., Yang, G., ... and Shao, Z. (2019). Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule3(11): 2842-2853.

9.      Shao, L., Si, F., Fu, X. Z. and Luo, J. L. (2018). Stable SrCo0.7Fe0.2Zr0.1O3-δ cathode material  for proton conducting solid oxide fuel cell reactors. International Journal of Hydrogen Energy43(15): 7511-7514.

10.   Zhu, H., Ricote, S., Duan, C., O’Hayre, R. P., Tsvetkov, D. S. and Kee, R. J. (2018). Defect incorporation and transport within dense BaZr0. 8Y0. 2O3−δ (BZY20) proton-conducting membranes. Journal of The Electrochemical Society, 165(9): F581.

11.   Osman, N., Senari, S. M. and Md Jani, A. M. (2020). Characterization of NiO-BCZY as composite anode prepared by a one-step sol-gel method. Malaysian Journal of Fundamental and Applied Sciences, 16(4): 450–452.

12.   Miao, L., Hou, J., Gong, Z., Jin, Z. and Liu, W. (2019). A high-performance cobalt-free Ruddlesden-Popper phase cathode La1· 2Sr0· 8Ni0· 6Fe0· 4O4+ δ for low temperature proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 44(14): 7531-7537.

13.   Mohsin, M., Yousaf, A., Raza, R. and Zia, R. (2019). Highly conducting perovskite structured (M-SrCoFe-O3-δ, M= Ce, Ba) cathode for solid oxide fuel cell. Journal of Alloys and Compounds, 791: 248-254.

14.   Lee, S., Park, S., Wee, S., woo Baek, H. and Shin, D. (2018). One-dimensional structured La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ-BaCe0. 5Zr0. 35Y0. 15O3− δ composite cathode for protonic ceramic fuel cells. Solid State Ionics, 320: 347-352.

15.   Osman, N., Ismail, I., Samat, A. A. and Md Jani, A. M. (2016). Reactivity study of LaSrCoFeO3-Ba (Ce, Zr)O3 composite cathode material. In Materials Science Forum, 486: 58-62.

16.   Kuroha, T., Yamauchi, K., Mikami, Y., Tsuji, Y., Niina, Y., Shudo, M., ... and Okuyama, Y. (2020). Effect of added Ni on defect structure and proton transport properties of indium-doped barium zirconate. International Journal of Hydrogen Energy, 45(4): 3123-3131.

17.   Baek, S.-W., J. Bae, and Y.-S. Yoo, Cathode reaction mechanism of porous-structured Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3-δ Sm0.2Ce0.8O1.9 for solid oxide fuel cells. Journal of Power Sources,193(2): 431-440.