Malaysian
Journal of Analytical Sciences Vol 26 No 4
(2022): 838 - 844
STRUCTURAL AND ELECTROCHEMICAL CHARACTERISATIONS OF LANTHANUM-BASED
COBALT FERRITE AND BARIUM CERATE-ZIRCONATE OXIDES AS COMPOSITE CATHODE FOR
PROTON CERAMIC FUEL CELL
(Pencirian
Struktur dan Elektrokimia Lantanum
Berasaskan Kobalt Ferum Oksida dan Barium Serat-Zirkonat Oksida Sebagai
Komposit Katod untuk Aplikasi Sel Fuel Seramik Proton)
Nurul
Izzati Abd Malek1, Ismariza Ismail2, Abdul Mutalib Md
Jani3, Mohd Hafiz Dzarfan Othman4, Nafisah Osman1,5*
1Proton Conducting Fuel Cell
Research Group, Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
2Faculty of Engineering Technology,
Universiti Malaysia Perlis, 02100
Padang Besar, Perlis, Malaysia
3Faculty of Applied Sciences,
Universiti Teknologi MARA, 35400
Tapah Road, Tapah, Perak, Malaysia
4Advanced Membrane Technology
Research Centre (AMTEC), School of Chemical & Energy
Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor, Malaysia
5Faculty of Applied Sciences,
Universiti Teknologi MARA Perlis,
02600 Arau, Perlis, Malaysia
*Corresponding author: fisha@uitm.edu.my
Received: 12 September 2021;
Accepted: 12 July 2022; Published: 25 August 2022
Abstract
This study investigated the
composite cathode ofLaSrCoFeO3-BaCeZrYO3 (LSCF-BCZY) in a ratio of 7 : 3. A
13-mm symmetrical half-cell was fabricated using the dry pressing and
spin-coating techniques to yield
the configuration of LSCF-BCZY|BCZY|LSCF-BCZY.
The phase of the sample was
verified using the X-Ray Diffraction (XRD) spectroscopy. The electrochemical and microstructure of the
half-cell were
characterized using the Electrochemical
Impedance Spectroscopy and Scanning Electron Microscopy (SEM), respectively. The XRD analysis
showed that the single-phase structure of LSCF and BCZY was still preserved at the calcination temperature of 900 oC. The half-cell demonstrated a thermally
activated trend in a humidified atmosphere with area-specific resistance values of 0.25, 0.33, 1.02, 1.64, and 5.75 Ω.cm2 at
temperatures of 800,
750, 700, 650, and 600 oC,
respectively. The SEM image revealed that the 10-μm LSCF-BCZY layer was well-adhered on the dense BCZY electrolyte surface.
This synthesised LSCF-BCZY in the ratio of 7 : 3 demonstrated excellent characteristics as a
composite cathode for PCFCs.
Keywords: composite
cathode, single phase, spin coating, proton ceramic fuel cells
Abstrak
Dalam
kajian ini, komposit katod daripada LaSrCoFeO3-BaCeZrYO3
(LSCF-BCZY) dengan nisbah 7 : 3 dipilih
disebabkan kelebihanya berbanding dengan LSCF tulen. Teknik penekanan kering
dan saduran berpusing telah digunakan untuk menghasilkan 13-mm sel separa
simetri dengan konfigurasi iaitu LSCF-BCZY|BCZY|LSCF-BCZY. Pembentukan fasa
sampel telah disahkan oleh pembelauan sinar-X (XRD). Sifat elektrokimia dan
struktur mikro daripada sel separa simetri masing-masing telah diciri
menggunakan spektroskopi impedans elektrokimia (EIS) dan pengimbasan mikroskop
elektron (SEM). Pada suhu kalsinan 900 oC,
komponen LSCF dan BCZY tidak menunjukkan sebarang perubahan dan berfasa tunggal
seperti dibuktikan melalui analisis XRD. Sel ini menunjukkan kecenderungan
aktif secara terma, yang disahkan melalui pengukuran EIS dalam atmosfera lembap
dengan kawasan rintangan khusus (ASR) masing-masing iaitu 0.25, 0.33, 1.02 , 1.64, dan 5.75 Ω.cm2 pada suhu 800,
750, 700, 650 dan 600 oC. Gambar SEM menunjukkan bahawa lapisan 10
μm LSCF-BCZY melekat dengan baik pada permukaan elektrolit padat BCZY.
Maka, penghasilan LSCF-BCZY dengan nisbah 7 : 3 menunjukkan ciri-ciri yang terbaik
sebagai katod komposit bagi aplikasi PCFC.
Kata kunci: katod
komposit, fasa tunggal, saduran berpusing, sistem sel
fuel seramik proton
Graphical Abstract

References
1.
He, W., Yuan, R. H., Dong, F. F., Wu, X. L. and Ni, M. (2017). High
performance of protonic solid oxide fuel cell with BaCo0. 7Fe0.
22Sc0. 08O3− δ electrode. International
Journal of Hydrogen Energy, 42(39): 25021-25025.
2.
Chen, J., Li, J., Jia, L., Moussa, I., Chi, B., Pu,
J. and Li, J. (2019). A novel layered perovskite Nd (Ba0.4Sr0.4Ca0.2)
Co1.6Fe0.4O5+δ as cathode for
proton-conducting solid oxide fuel cells. Journal of Power Sources, 428:
13-19.
3.
Fang, X., Zhu, J. and Lin, Z. (2018). Effects of electrode composition and thickness
on the mechanical performance of a solid oxide fuel cell. Energies,
11(7): 1735.
4.
Osman, N., Ismail, I., Samat, A. A. and Md Jani, A. M. (2016). Reactivity
study of LaSrCoFeO3-Ba (Ce, Zr) O3 composite cathode
material. In Materials Science Forum, 846: pp. 58-62.
5.
Ismail, I., Osman, N. and Jani, A. M. M. (2018). Evaluation of La0. 6Sr0.
4Co0. 2Fe0. 8O3-δ as a potential
cathode for proton-conducting solid oxide fuel cell. Sains Malaysiana,
47(2): 387-391.
6.
Matsui, T., Kunimoto, N., Manriki, K., Miyazaki, K., Kamiuchi, N.,
Muroyama, H. and Eguchi, K., 2021. Oxygen reduction reaction over (Ba, Sr)6RE2Co4O15–Ba(Ce,Pr,Y)O3
composite cathodes for proton-conducting ceramic fuel cells. Journal of
Materials Chemistry A, 9(27): 15199 15206.
7.
Loureiro, F. J.,
Ramasamy, D., Mikhalev, S. M.,
Shaula, A. L., Macedo, D. A. and Fagg, D. P.(2021). La4Ni3O10±δ–BaCe0.9Y0.1O3-δ
cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0.
9Y0. 1O3-δ symmetric cells. International Journal of Hydrogen Energy, 46(25):
13594-13605.
8.
Song, Y., Chen,
Y., Wang, W., Zhou, C., Zhong, Y., Yang, G., ... and Shao, Z. (2019).
Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell
cathode. Joule, 3(11): 2842-2853.
9.
Shao, L.,
Si, F., Fu, X. Z. and Luo, J. L. (2018). Stable
SrCo0.7Fe0.2Zr0.1O3-δ cathode material for proton conducting solid oxide fuel
cell reactors. International
Journal of Hydrogen Energy, 43(15): 7511-7514.
10.
Zhu, H., Ricote, S., Duan, C., O’Hayre, R. P., Tsvetkov, D. S. and Kee, R.
J. (2018). Defect incorporation and transport within dense BaZr0. 8Y0.
2O3−δ (BZY20) proton-conducting
membranes. Journal of The Electrochemical Society, 165(9): F581.
11.
Osman, N., Senari, S. M. and Md Jani, A. M. (2020). Characterization of
NiO-BCZY as composite anode prepared by a one-step sol-gel method. Malaysian
Journal of Fundamental and Applied Sciences, 16(4): 450–452.
12.
Miao, L., Hou, J., Gong, Z., Jin, Z. and Liu, W. (2019). A high-performance
cobalt-free Ruddlesden-Popper phase cathode La1· 2Sr0· 8Ni0·
6Fe0· 4O4+ δ for low temperature
proton-conducting solid oxide fuel cells. International Journal of Hydrogen
Energy, 44(14): 7531-7537.
13.
Mohsin, M., Yousaf, A., Raza, R. and Zia, R. (2019). Highly conducting
perovskite structured (M-SrCoFe-O3-δ, M= Ce, Ba) cathode for solid
oxide fuel cell. Journal of Alloys and Compounds, 791: 248-254.
14.
Lee, S., Park, S., Wee, S., woo Baek, H. and Shin, D. (2018).
One-dimensional structured La0. 6Sr0. 4Co0. 2Fe0.
8O3− δ-BaCe0. 5Zr0. 35Y0.
15O3− δ composite cathode for protonic ceramic fuel
cells. Solid State Ionics, 320: 347-352.
15.
Osman, N., Ismail, I., Samat, A. A. and Md Jani, A. M. (2016). Reactivity
study of LaSrCoFeO3-Ba (Ce, Zr)O3 composite cathode
material. In Materials Science Forum, 486: 58-62.
16.
Kuroha, T., Yamauchi, K., Mikami, Y., Tsuji, Y., Niina, Y., Shudo, M., ...
and Okuyama, Y. (2020). Effect of added Ni on defect structure and proton
transport properties of indium-doped barium zirconate. International Journal
of Hydrogen Energy, 45(4): 3123-3131.
17.
Baek, S.-W., J. Bae, and Y.-S. Yoo, Cathode
reaction mechanism of porous-structured Sm0.5Sr0.5CoO3−δ
and Sm0.5Sr0.5CoO3-δ Sm0.2Ce0.8O1.9 for solid oxide fuel
cells. Journal of Power Sources,193(2): 431-440.