Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 829 - 837

 

 

 

 

THE COMPATIBILITY OF JACKFRUIT SEED STARCH AND POLYVINYL ALCOHOL BLEND AS BIOPOLYMER ELECTROLYTE HOST

 

(Keserasian Kanji Biji Nangka dan Campuran Polivinil Alkohol sebagai Hos Elektrolit Biopolimer)

 

Raihan Ramli1, Fairuzdzah Ahmad Lothfy1*, Asiah Mohd Nor2, Ab Malik Marwan Ali2

 

1Faculty of Applied Science,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Faculty of Applied Science,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  fairuzdzah@uitm.edu.my

 

 

Received: 29 March 2022; Accepted: 3 July 2022; Published: 25 August 2022

 

 

Abstract

Biopolymer electrolytes have a lot of potential for future electrochemical device developments because of their environmentally-friendly features. In general, the structural characteristics of the biopolymer host play the most crucial impact in determining electrolyte conductivity. However, the semi crystallinity structure of biopolymer hosts caused the reduction of electrolyte conductivity. As a result, in this study, the structural characteristics of the biomaterial have been modified by blending jackfruit seed starch (JSS) and polyvinyl alcohol (PVA) to obtain the optimal composition of the blend that is compatible to be employed as a biopolymer electrolyte host. The jackfruit seed starch and polyvinyl alcohol were blended with various compositions using the solution casting technique. The purpose of this study is to look into the amorphousness, functional groups, and morphology of JSS with PVA blend and determine the compatibility of JSS with PVA blend as a polymer electrolyte host.  The best compatible blend composition is JSS-PVA with a 1:1 ratio, which has the highest degree of amorphosity and the highest percentage of hydrogen bonding contact, C=O stretching, and C-O vibrations. Scanning electron microscopy investigation confirms the results, indicating that the blend is evenly dispersed.

 

Keywords:  jackfruit seed starch, polyvinyl alcohol, biopolymer electrolyte host, amorphous

 

Abstrak

Elektrolit biopolimer mempunyai banyak potensi untuk perkembangan peranti elektrokimia masa depan kerana ciri-ciri mesra alamnya. Secara umumnya, ciri-ciri struktur hos biopolimer memainkan peranan yang paling penting dalam menentukan kekonduksian elektrolit. Walau bagaimanapun, struktur separa kristal perumah biopolimer menyebabkan pengurangan dalam kekonduksian elektrolit. Hasilnya, dalam kajian ini, ciri-ciri struktur biomaterial telah diubahsuai dengan mencampurkan kanji biji nangka (JSS) dan polivinil alkohol (PVA) untuk mendapatkan komposisi optimum campuran yang serasi untuk digunakan sebagai hos elektrolit biopolimer. Kanji biji nangka dan polivinil alkohol diadun dengan pelbagai komposisi menggunakan teknik ‘solution casting’. Ia bertujuan untuk melihat sifat amorfousness, kumpulan berfungsi, dan morfologi JSS dengan campuran PVA dan menentukan keserasian JSS dengan campuran PVA sebagai hos elektrolit polimer. Komposisi campuran serasi terbaik ialah JSS-PVA dengan nisbah 1:1, yang mempunyai tahap amorphositi tertinggi dan peratusan tertinggi hubungan ikatan hidrogen, regangan C=O, dan getaran C-O. Mengimbas penyiasatan mikroskopi elektron mengesahkan hasilnya, menunjukkan bahawa campuran itu tersebar sama rata.

 

Kata kunci:  kanji biji nangka, polivinil alkohol, perumah elektrolit biopolimer, amorphous

 


Graphical Abstract

 

 

 

References

1.      Hallinan, D. T. and Balsara, N. P. (2013). Polymer electrolytes. Annual Review of Materials Research, 43: 503-525.

2.      Aziz, S. B., Woo, T. J., Kadir, M. F. Z. and Ahmed, H. M. (2018). A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 3(1): 1-17.

3.      Gurusiddappa, J., Madhuri, W., Padma Suvarna, R. and Priya Dasan, K. (2016). Studies on the morphology and conductivity of PEO/LiClO4. Materials Today: Proceedings, 3(6): 1451-1459.

4.      Theivasanthi, T. and Alagar, M. (2013). An insight analysis of nano sized powder of jackfruit seed. Nano Biomedicine and Engineering, 3(3): 2-3.

5.      Tulyathan, V., Tananuwong, K., Songjinda, P. and Jaiboon, N. (2002). Some physicochemical properties of jackfruit (Artocarpus heterophyllus Lam) seed flour and starch. ScienceAsia, 28: 37-41.

6.      Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., de Oliveira, C. P., da Costa Ilhéu Fontan, R. and Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1): 278-286.

7.      Lothfy, F. A., Haron, M. F. and Rafaie, H. A. (2018). Fabrication and characterization of jackfruit seed powder and polyvinyl alcohol blend as biodegradable plastic. Journal of Polymer Science and Technology, 3(2): 1-5.

8.      Lestari, R. A. S., Kasmiyatun, M., Dermawan, K., Aini, A. N., Riyati, N. and Putri, F. R. (2020). Bioplastic from jackfruit seeds and rice. IOP Conference Series: Materials Science and Engineering, 835(1).

9.      Lin, Z., Guo, X., Wang, Z., Wang, B., He, S., Dell, L. A. O., Huang, J., Li, H., Yu, H. and Chen, L. (2020). Nano energy a wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery. Nano Energy, 73(3): 104786.

10.   Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. and Bruce, P. G. (2001). Ionic conductivity in crystalline polymer electrolytes. Nature, 412(6846): 520-523.

11.   Zou, G. X., Jin, P. Q. and Xin, L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal properties, and morphology. Journal of Elastomers and Plastics, 40(4): 303-316.

12.   Aziz, S. B., Marf, A. S., Dannoun, E. M. A., Brza, M. A. and Abdullah, R. M. (2020). The study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers, 12(10): 1-17.

13.   Long, L., Wang, S., Xiao, M. and Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A, 4(26): 10038-10039.

14.   Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H. (2010). Dye-Sensitized Solar Cells. 6595–6663.

15.   Aslam, M., Kalyar, M. A. and Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering and Science, 58(12): 2119-2132.

16.   Fahmy, T., Sarhan, A. and Elqahtani, Z. M. (2020). Structural and optical characterization of thiourea-poly (vinyl alcohol) composites. International Journal of Engineering Research and Technology, 13(3): 454-461.

17.   Chen, S. H., Tsao, C. T., Chang, C. H., Lai, Y. T., Wu, M. F., Liu, Z. W., ... and Hsieh, K. H. (2013). Synthesis and characterization of reinforced poly (ethylene glycol)/chitosan hydrogel as wound dressing materials. Macromolecular Materials and Engineering, 298(4): 429-438.

18.   Tian, H., Yan, J., Rajulu, A. V., Xiang, A. and Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96: 518-523.

19.   Retnowati, D. S., Ratnawati, R. and Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus heterophyllus) and durian (Durio zibethinus) seed flours. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16(4): 395-404.

20.   Ooi, Z. X., Ismail, H. and Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer film composites based on polyvinyl alcohol and tropical fruit waste flour. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. Elsevier Ltd.

21.   Jayakumar, A., Heera, K. V., Sumi, T. S., Joseph, M., Mathew, S., Praveen, G., ... and Radhakrishnan, E. K. (2019). Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. International Journal of Biological Macromolecules, 136: 395-403.

22.   Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1): 97-118.

23.   Sarebanha, S., & Farhan, A. (2018). Eco-friendly composite films based on polyvinyl alcohol and jackfruit waste flour. Journal of Packaging Technology and Research, 2(3): 181-190.

24.   Arof, A. K., Amirudin, S., Yusof, S. Z. and Noor, I. M. (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 16(5): 1856-1867.

25.   Kane, S. N., Mishra, A. and Dutta, A. K. (2016). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics: Conference Series, 755(1): 6.

26.   Sarifuddin, N., Shahrim, N. A., Rani, N. N. S. A., Zaki, H. H. M. and Azhar, A. Z. A. (2018). Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film. IOP Conference Series: Materials Science and Engineering, 290(1): 012065.

27.   Hamsan, M. H., Nofal, M. M., Aziz, S. B., Brza, M. A., & Dannoun, E. M. A. (2021). Plasticized polymer blend electrolyte based on chitosan for energy storage application: structural, circuit modeling, morphological and electrochemical properties. Polymers, 13(8): 1233.

28.   Yap, Y. L., You, A. H., Teo, L. L. and Hanapei, H. (2013). Inorganic filler sizes effect on ionic conductivity in polyethylene oxide (PEO) composite polymer electrolyte. International Journal of Electrochemical Science, 8(2): 2154-2163.

29.   Janik, W., Wojtala, A., Pietruszka, A., Dudek, G. and Sabura, E. (2021). Environmentally friendly melt-processed chitosan/starch composites modified with pva and lignin. Polymers, 13(16): 2685.

30.   Liew, C. W. and Ramesh, S. (2015). Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes. Carbohydrate Polymers, 124: 222-228.

31.   Hema, M., Selvasekarapandian, S., Arunkumar, D., Sakunthala, A. and Nithya, H. (2009). FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I). Journal of Non-Crystalline Solids, 355(2): 84-90.