Malaysian
Journal of Analytical Sciences Vol 26 No 4
(2022): 829 - 837
THE
COMPATIBILITY OF JACKFRUIT SEED STARCH AND POLYVINYL ALCOHOL BLEND AS
BIOPOLYMER ELECTROLYTE HOST
(Keserasian Kanji Biji Nangka dan Campuran Polivinil
Alkohol sebagai Hos Elektrolit Biopolimer)
Raihan Ramli1,
Fairuzdzah Ahmad Lothfy1*, Asiah Mohd Nor2, Ab Malik
Marwan Ali2
1Faculty of Applied Science,
Universiti Teknologi MARA Pahang, 26400
Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
2Faculty of Applied Science,
Universiti Teknologi MARA, 40450
Shah Alam, Selangor, Malaysia
*Corresponding author: fairuzdzah@uitm.edu.my
Received: 29 March 2022;
Accepted: 3 July 2022; Published: 25 August 2022
Abstract
Biopolymer electrolytes have a lot of potential
for future electrochemical device developments because of their
environmentally-friendly features. In general, the structural characteristics
of the biopolymer host play the most crucial impact in determining electrolyte
conductivity. However, the semi crystallinity structure of biopolymer hosts
caused the reduction of electrolyte conductivity. As a result, in this study,
the structural characteristics of the biomaterial have been modified by
blending jackfruit seed starch (JSS) and polyvinyl alcohol (PVA) to obtain the
optimal composition of the blend that is compatible to be employed as a
biopolymer electrolyte host. The jackfruit seed starch
and polyvinyl alcohol were blended with various compositions using the solution
casting technique. The purpose of this study is to look into the amorphousness,
functional groups, and morphology of JSS with PVA blend and determine the
compatibility of JSS with PVA blend as a polymer electrolyte host. The best compatible blend composition is
JSS-PVA with a 1:1 ratio, which has the highest degree of amorphosity and the
highest percentage of hydrogen bonding contact, C=O stretching, and C-O
vibrations. Scanning electron microscopy investigation confirms the results,
indicating that the blend is evenly dispersed.
Keywords: jackfruit seed starch, polyvinyl alcohol,
biopolymer electrolyte host, amorphous
Abstrak
Elektrolit biopolimer mempunyai
banyak potensi untuk perkembangan peranti elektrokimia masa depan kerana
ciri-ciri mesra alamnya. Secara umumnya, ciri-ciri struktur hos biopolimer
memainkan peranan yang paling penting dalam menentukan kekonduksian elektrolit.
Walau bagaimanapun, struktur separa kristal perumah biopolimer menyebabkan
pengurangan dalam kekonduksian elektrolit. Hasilnya, dalam kajian ini,
ciri-ciri struktur biomaterial telah diubahsuai dengan mencampurkan kanji biji
nangka (JSS) dan polivinil alkohol (PVA) untuk mendapatkan komposisi optimum
campuran yang serasi untuk digunakan sebagai hos elektrolit biopolimer. Kanji
biji nangka dan polivinil alkohol diadun dengan pelbagai komposisi menggunakan
teknik ‘solution casting’. Ia bertujuan untuk melihat sifat amorfousness,
kumpulan berfungsi, dan morfologi JSS dengan campuran PVA dan menentukan
keserasian JSS dengan campuran PVA sebagai hos elektrolit polimer. Komposisi
campuran serasi terbaik ialah JSS-PVA dengan nisbah 1:1, yang mempunyai tahap amorphositi
tertinggi dan peratusan tertinggi hubungan ikatan hidrogen, regangan C=O, dan
getaran C-O. Mengimbas penyiasatan mikroskopi elektron mengesahkan hasilnya,
menunjukkan bahawa campuran itu tersebar sama rata.
Kata kunci: kanji biji nangka, polivinil alkohol, perumah
elektrolit biopolimer, amorphous
Graphical Abstract
References
1.
Hallinan, D. T. and Balsara, N. P. (2013). Polymer
electrolytes. Annual Review of Materials Research, 43: 503-525.
2.
Aziz, S. B., Woo, T. J., Kadir, M. F. Z. and Ahmed, H. M.
(2018). A conceptual review on polymer electrolytes and ion transport models. Journal
of Science: Advanced Materials and Devices, 3(1): 1-17.
3.
Gurusiddappa, J., Madhuri, W.,
Padma Suvarna, R. and Priya Dasan, K. (2016). Studies
on the morphology and conductivity of PEO/LiClO4. Materials
Today: Proceedings, 3(6): 1451-1459.
4.
Theivasanthi, T. and Alagar, M.
(2013). An insight analysis of nano sized powder of jackfruit seed. Nano
Biomedicine and Engineering, 3(3): 2-3.
5.
Tulyathan, V., Tananuwong, K.,
Songjinda, P. and Jaiboon, N. (2002). Some physicochemical properties of
jackfruit (Artocarpus heterophyllus Lam) seed flour and starch. ScienceAsia,
28: 37-41.
6.
Santana,
R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S.,
dos Santos Pires, A. C., de Oliveira, C. P., da Costa Ilhéu Fontan, R. and
Veloso, C. M. (2018). Characterization of
starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal
of Food Science and Technology, 55(1): 278-286.
7.
Lothfy, F. A., Haron, M. F. and
Rafaie, H. A. (2018). Fabrication and characterization of jackfruit seed powder
and polyvinyl alcohol blend as biodegradable plastic. Journal of Polymer
Science and Technology, 3(2): 1-5.
8.
Lestari, R. A. S., Kasmiyatun,
M., Dermawan, K., Aini, A. N., Riyati, N. and Putri, F. R. (2020). Bioplastic
from jackfruit seeds and rice. IOP Conference Series: Materials Science and
Engineering, 835(1).
9.
Lin, Z., Guo, X., Wang, Z.,
Wang, B., He, S., Dell, L. A. O., Huang, J., Li, H., Yu, H. and Chen, L. (2020).
Nano energy a wide-temperature superior ionic conductive polymer electrolyte
for lithium metal battery. Nano Energy, 73(3): 104786.
10.
Gadjourova, Z., Andreev, Y. G.,
Tunstall, D. P. and Bruce, P. G. (2001). Ionic conductivity in crystalline
polymer electrolytes. Nature, 412(6846): 520-523.
11.
Zou, G. X., Jin, P. Q. and Xin,
L. Z. (2008). Extruded starch/PVA composites: Water resistance, thermal
properties, and morphology. Journal of Elastomers and Plastics, 40(4):
303-316.
12.
Aziz, S. B., Marf, A. S.,
Dannoun, E. M. A., Brza, M. A. and Abdullah, R. M. (2020). The study of the
degree of crystallinity, electrical equivalent circuit, and dielectric
properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers,
12(10): 1-17.
13.
Long, L., Wang, S., Xiao, M.
and Meng, Y. (2016). Polymer electrolytes for lithium polymer batteries. Journal
of Materials Chemistry A, 4(26): 10038-10039.
14.
Hagfeldt, A., Boschloo, G.,
Sun, L., Kloo, L. and Pettersson, H. (2010). Dye-Sensitized Solar Cells.
6595–6663.
15.
Aslam, M., Kalyar, M. A. and
Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of
polyvinyl alcohol based nanocomposites. Polymer Engineering and Science,
58(12): 2119-2132.
16.
Fahmy, T., Sarhan, A. and
Elqahtani, Z. M. (2020). Structural and optical characterization of
thiourea-poly (vinyl alcohol) composites. International Journal of
Engineering Research and Technology, 13(3): 454-461.
17.
Chen, S. H.,
Tsao, C. T., Chang, C. H., Lai, Y. T., Wu, M. F., Liu, Z. W., ... and Hsieh, K.
H. (2013). Synthesis and characterization of reinforced poly (ethylene
glycol)/chitosan hydrogel as wound dressing materials. Macromolecular Materials
and Engineering, 298(4): 429-438.
18.
Tian, H., Yan, J., Rajulu, A.
V., Xiang, A. and Luo, X. (2017). Fabrication and properties of polyvinyl
alcohol/starch blend films: Effect of composition and humidity. International
Journal of Biological Macromolecules, 96: 518-523.
19.
Retnowati, D. S., Ratnawati, R.
and Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus
heterophyllus) and durian (Durio zibethinus) seed flours. Scientific
Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food
Industry, 16(4): 395-404.
20.
Ooi, Z. X., Ismail, H. and
Teoh, Y. P. (2018). Characterization and properties of biodegradable polymer
film composites based on polyvinyl alcohol and tropical fruit waste flour. In Natural
Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. Elsevier Ltd.
21.
Jayakumar, A., Heera, K. V., Sumi, T. S., Joseph, M., Mathew, S., Praveen,
G., ... and Radhakrishnan, E. K. (2019). Starch-PVA composite films with
zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for
food packaging application. International Journal of Biological
Macromolecules, 136: 395-403.
22.
Nandiyanto, A. B. D., Oktiani,
R. and Ragadhita, R. (2019). How to read and interpret FTIR
spectroscope of organic material. Indonesian Journal of Science and
Technology, 4(1): 97-118.
23.
Sarebanha, S., & Farhan, A.
(2018). Eco-friendly composite films based on polyvinyl alcohol and jackfruit
waste flour. Journal of Packaging Technology and Research, 2(3):
181-190.
24.
Arof, A. K., Amirudin, S.,
Yusof, S. Z. and Noor, I. M. (2014). A method based on impedance spectroscopy
to determine transport properties of polymer electrolytes. Physical
Chemistry Chemical Physics, 16(5): 1856-1867.
25.
Kane, S. N., Mishra, A. and
Dutta, A. K. (2016). Preface: International
Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics:
Conference Series, 755(1): 6.
26.
Sarifuddin, N., Shahrim, N. A.,
Rani, N. N. S. A., Zaki, H. H. M. and Azhar, A. Z. A. (2018). Preparation and
characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend
film. IOP Conference Series: Materials Science and Engineering, 290(1):
012065.
27.
Hamsan, M. H., Nofal, M. M.,
Aziz, S. B., Brza, M. A., & Dannoun, E. M. A. (2021). Plasticized polymer
blend electrolyte based on chitosan for energy storage application: structural,
circuit modeling, morphological and electrochemical properties. Polymers,
13(8): 1233.
28.
Yap, Y. L., You, A. H., Teo, L.
L. and Hanapei, H. (2013). Inorganic filler sizes effect on ionic conductivity
in polyethylene oxide (PEO) composite polymer electrolyte. International
Journal of Electrochemical Science, 8(2): 2154-2163.
29.
Janik, W., Wojtala, A.,
Pietruszka, A., Dudek, G. and Sabura, E. (2021). Environmentally friendly
melt-processed chitosan/starch composites modified with pva and lignin. Polymers,
13(16): 2685.
30.
Liew, C. W. and Ramesh, S.
(2015). Electrical, structural, thermal and electrochemical properties of corn
starch-based biopolymer electrolytes. Carbohydrate Polymers, 124:
222-228.
31.
Hema, M., Selvasekarapandian,
S., Arunkumar, D., Sakunthala, A. and Nithya, H. (2009). FTIR, XRD and ac
impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X
(X = Cl, Br, I). Journal of Non-Crystalline Solids, 355(2): 84-90.