Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 546 - 553

 

 

 

 

SYNTHESIS OF ZnO ON 3D GRAPHENE/NICKEL FOAM FOR PHOTOELECTROCHEMICAL WATER SPLITTING

 

(Sintesis ZnO pada 3D Grafin/Busa Nikel untuk Pembelahan Molekul Air Secara Fotoelektrokimia)

 

Nur Rabiatul Adawiyah Mohd Shah, Rozan Mohamad Yunus*, Nurul Nabila Rosman, Wai Yin Wong, Khuzaimah Arifin, Lorna Jeffery Minggu

 

Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  rozanyunus@ukm.edu.my

 

 

Received: 13 December 2021; Accepted: 27 February 2022; Published:  27 June 2022

 

 

Abstract

Photoelectrochemical (PEC) water splitting is a promising method that involves a direct route to produce green hydrogen (H2). An efficient semiconductor photoelectrode that has a suitable band gap between the valence and conduction band is stable in an aqueous solution and cost-effective. Efficient charge transfer and outstanding light absorption are required to achieve enhanced PEC water splitting performance. However, the wide band gap of current photoelectrode such as zinc oxide (ZnO) limits their ability to transport electron, causing photogenerated electron–hole pair recombination and poor PEC performance. This study aims to design an efficient photoelectrode by incorporating a three-dimensional (3D) graphene with ZnO, where 3D graphene serves as a co-catalyst/support to enhance the photocatalytic activity of ZnO. The 3D graphene was first synthesized on nickel foam (Ni-foam) via chemical vapor deposition method with the flow of argon, H2, and methane gas flow in a quartz tube, followed by the growth of ZnO via a hydrothermal method at 150 °C and 200 °C. FESEM, EDX and Raman confirmed the successful growth of ZnO on 3D graphene/Ni-foam. The flower-like ZnO was observed by FESEM after the hydrothermal method, and the highest photocurrent density was measured at 150 °C (108.2 mA cm-2). Therefore, flower-like ZnO flower-like on 3D graphene/Ni-foam can be used as an efficient semiconductor photoelectrode in PEC water splitting.

 

Keywords:  3D graphene, zinc oxide, photoelectrode, photoelectrochemical water splitting

 

Abstrak

Pembelahan molekul air secara fotoelektrokimia (PEC) merupakan kaedah yang menggunakan laluan yang mudah untuk menghasilkan hidrogen (H2). Fotoelektrod semikonduktor yang cekap mempunyai jurang jalur yang sesuai antara jalur valensi dan konduksi, stabil dalam larutan berair dan kos yang rendah. Pemindahan cas yang cekap dan penyerapan cahaya yang baik diperlukan untuk mencapai prestasi pembelahan molekul air PEC yang tinggi. Walau bagaimanapun, jurang jalur fotoelektrod yang lebar seperti zink oksida (ZnO) menghadkan kebolehannya untuk pengangkutan elektron, menyebabkan penggabungan semula lubang–elektron terjana dan prestasi PEC yang rendah. Kajian ini bertujuan untuk merekacipta fotoelektrod yang cekap dengan menggabungkan tiga-dimensi (3D) grafin dengan ZnO, di mana 3D grafin bertindak sebagai pemangkin bersama/sokongan untuk meningkatkan aktiviti fotokatalitik ZnO. 3D grafin disintesis pada busa nikel (busa-Ni) melalui kaedah pemendapan wap kimia dengan aliran gas argon, H2 dan metana dalam tiub kuarza, diikuti dengan pertumbuhan ZnO melalui kaedah hidrotherma pada 150 °C and 200 °C. FESEM, EDX dan Raman mengesahkan pertumbuhan ZnO pada 3D grafin/busa-Ni. Pertumbuhan ZnO seperti bunga dapat dilihat dengan alat FESEM selepas melalui kaedah hidrotherma dan ketumpatan foto arus yang tinggi diukur pada suhu 150 °C (108.2 mA cm-2). Oleh itu, ZnO berbentuk seperti bunga pada 3D grafin/busa-Ni boleh digunakan untuk fotoelektrod semikondutor yang cekap dalam pembelahan air secara PEC.

 

Kata kunci:  3D grafin, zink oksida, fotoelektrod, pembelahan molekul air secara fotoelektrokimia

 


Graphical Abstract


 

 

References

1.      Li, Y. and Tsang, S. C. E. (2020). Recent progress and strategies for enhancing photocatalytic water splitting. Mater. Today Sustain., 9: 100032.

2.      Li, X., Zhao, L., Yu, J., Liu, X., Zhang, X., Liu, H. and Zhou, W. (2020). Water splitting: From electrode to green energy system. Nano-Micro Letters, Springer Singapore 12.

3.      Dias, P. and Mendes, A. (2018). Hydrogen production from photoelectrochemical water splitting. In encyclopedia of sustainability science and technology (Meyers, R. A., ed.). Springer New York, New York: pp 1-52.

4.      Cao, S., Piao, L. and Chen, X. (2020). Emerging photocatalysts for hydrogen evolution. Trends Chemistry, Elsevier Inc. 2: pp. 57-70.

5.      Hisatomi, T. and Domen, K. (2019). Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalyst, 2: 387-399.

6.      Young, J. L., Steiner, M. A., Döscher, H., France, R. M., Turner, J. A. and Deutsch, T. G. (2017). Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nature Energy, 2: 1-8.

7.      Kuang, P., Sayed, M., Fan, J., Cheng, B. and Yu, J. (2020). 3D graphene-based H2-production photocatalyst and electrocatalyst. Advance Energy Materials, 10: 1-53.

8.      Mohd Shah, N. R. A., Mohamad Yunus, R., Rosman, N. N., Wong, W. Y., Arifin, K. and Jeffery Minggu, L. (2021). Current progress on 3D graphene-based photocatalysts: From synthesis to photocatalytic hydrogen production. International Journal Hydrogen Energy, 46: 9324-9340.

9.      Gowtham, M., Chandrasekar, S., Mohanraj, C. and Senthil Kumar, N. (2020). Morphology dependent photocatalytic activity of ZnO nanostructures-A short review. NanoNEXT, 1: 30-38.

10.   Baruah, S. and Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science Technology Advance Materials, 10: 013001.

11.   Vaseem, M., Umar, A. and Hahn, Y. (2010). ZnO nanoparticles: Growth, properties, and applications. Metal Oxide Nanostructures Their Applications, 5: 1-36.

12.   Singh, P., Shandilya, P., Raizada, P., Sudhaik, A., Rahmani-Sani, A. and Hosseini-Bandegharaei, A. (2020). Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal Chemistry, 13: 3498-3520.

13.   Gao, C., Zhong, K., Fang, X., Fang, D., Zhao, H., Wang, D., Li, B., Zhai, Y., Chu, X. and Li, J. (2021). Brief review of photocatalysis and photoresponse properties of ZnO–graphene nanocomposites. Energies, 14: 6403.

14.   Mohd Shah, N. R. A., Rosman, N. N., Wong, W. Y., Arifin, K., Jeffery Minggu, L. and Mohamad Yunus, R. (2021). Effect of annealing time on chemical vapor deposition growth of 3D graphene for photoelectrochemical water splitting. Material Today Proceeding, 57(3): 1215-1219.

15.   Ong, C. B., Ng, L. Y. and Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable Sustainable Energy Review, 81: 536–551.

16.   Mohamed, M. A., M. Zain, M. F., Jeffery Minggu, L., Kassim, M. B., Jaafar, J., Saidina Amin, N. A., Mastuli, M. S., Wu, H., Wong, R. J. and Ng, Y. H. (2019). Bio-inspired hierarchical hetero-architectures of in-situ C-doped g-C3N4 grafted on C, N co-doped ZnO micro-flowers with booming solar photocatalytic activity. Journal Industry Engineering Chemistry, 77: 393-407.

17.   Wang, W. X., Zhang, S. C., Xing, Y. L., Wang, S. B. and Ren, Y. B. (2016). The closed-environment CVD method for preparing three-dimensional defect controllable graphene foam with a conductive interconnected network for lithium-ion battery applications. RSC Advance, 6: 75414-75419.

18.   Ghorbani, M., Abdizadeh, H., Taheri, M. and Golobostanfard, M. R. (2018). Enhanced photoelectrochemical water splitting in hierarchical porous ZnO/Reduced graphene oxide nanocomposite synthesized by sol-gel method. Int. J. Hydrogen Energy, 43, 7754–7763.

19.   Gadisa, B. T., Baye, A. F., Appiah-Ntiamoah, R. and Kim, H. (2021). ZnO@Ni foam photoelectrode modified with heteroatom doped graphitic carbon for enhanced photoelectrochemical water splitting under solar light. International Journal Hydrogen Energy, 46: 2075-2085.

20.   Men, X., Chen, H., Chang, K., Fang, X., Wu, C., Qin, W. and Yin, S. (2016). Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Applied Catalyst B Environment, 187: 367-374.