Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 532 - 545

 

 

 

 

BIOSORPTION CAPACITY OF HEAVY METAL LEAD (Pb(II)) USING DRY SEAWEED Eucheuma denticulatum

 

(Kapasiti Biojerapan Logam Berat Plumbum (Pb(II)) Mengunakan Rumpai Laut Kering Eucheuma denticulatum)

 

Hamad Maalim Sharif 1, Yahya Makame 2, Mohammed Ali Sheikh 3, Hasrizal Shaari 1,4*, Rokiah Suriadi1

 

1Institute of Oceanography and Environment,

Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

2Chemistry Department, School of Natural and Applied Sciences,

University of Dar es Salaam, P.O. Box 35065, Dar es Salaam, Tanzania

3School of Natural and Social Sciences,

The State University of Zanzibar, P. O. Box 146, Zanzibar, Tanzania

4Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: riz@umt.edu.my

 

 

Received: 29 October 2021; Accepted: 27 February 2022 ; Published: 27 June 2022

 

 

Abstract

The seaweed industry plays a significant socio-economic role in tropical coastal communities. This study presents the biosorption behaviour of Pb(II) aqueous solution onto seaweed E. denticulatum. The impact of pH contact time, the initial concentration of the metals, and the adsorption-desorption activities were studied. The findings demonstrated that the Pb(II) uptake rate rose with increased concentration and contact time. The Pb(II) uptake reached saturation at 1000 mg/L after 120 min at room temperature. Pb(II) biosorption onto Eucheuma denticulatum fitted well to the Langmuir isotherm, with a maximum adsorption capacity (qmax) of 416.67 mg/g. The results suggest that this type of seaweed, E. denticulatum, is an effective biosorbent for removing Pb (II) and may control toxic metal pollution in tropical aquatic ecosystems.

 

Keywords:  biosorption, Eucheuma denticulatum, heavy metals, Langmuir and Freundlich models

 

Abstrak

Industri rumpai laut memainkan peranan sosio-ekonomi yang sangat penting bagi masyarakat pesisir pantai tropika. Kajian ini menunjukkan tingkah laku biojerapan larutan akues Pb(II) ke atas Eucheuma denticulatum. Pengaruh hubungan masa pH, kepekatan awal logam, dan kajian penjerapan-penyerapan telah dilakukan. Hasil kajian menunjukkan bahawa kadar pengambilan Pb(II) meningkat dengan peningkatan kepekatan dan masa hubungan. Pengambilan Pb(II) mencapai titik tepu pada 1000 mg/L setelah 120 minit pada suhu bilik. Biojerapan Pb(II) ke atas E. denticulatum dipasang dengan baik pada isoterm Langmuir dengan kapasiti penjerapan maksimum (qmax) 416.67 mg/g. Hasilnya menunjukkan bahawa rumpai laut E. denticulatum adalah biopenjerap yang berkesan untuk menghilangkan Pb(II) dan mungkin boleh digunakan untuk mengawal pencemaran logam toksik di ekosistem perairan tropika.

 

Kata kunci:  biojerapan, Eucheuma denticulatum, logam berat, model Langmuir dan Freundlich

 


Graphical Abstract


 

 

References

1.      Asnani, P. U. and Zurbrugg, C. (2007). Improving municipal solid waste management in India: A sourcebook for policymakers and practitioners. World Bank Publications.

2.      Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., Wang, Y., Jia, W. X. and Qiu, P. P. (2012). Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment, 417–418: 148-157.

3.      Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368(2–3): 456-464.

4.      Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Singh, B. P., Rai, J. P., Sharma, P. K., Lade, H. and Paul, D. (2015). Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability (Switzerland), 7(2): 2189-2212.

5.      Das, N. (2005). Heavy metals biosorption by mushrooms. Indian Journal of Natural Products and Resources, 4(6): 454-459.

6.      Volesky, B. (2007). Biosorption and me. Water Research, 41(18): 4017-4029.

7.      Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R. and McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181: 817–831.

8.      Mousavi, S. A., Almasi, A., Navazeshkh, F. and Falahi, F. (2019). Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling. Desalination and Water Treatment, 148: 229-237.

9.      Dwivedi, S., Mishra, A. and Saini, D. (2012). Removal of heavy metals in liquid media through fungi isolated from waste water. International Journal of Science and Research, 1: 2319-7064.

10.   Vijayaraghavan, K. and Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26(3): 266-291.

11.   Elangovan, R., Philip, L. and Chandraraj, K. (2008). Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies. Journal of Hazardous Materials, 152(1): 100-112.

12.   Rahman, H. U., Shakirullah, M., Ahmad, I., Shah, S. and Shah, A. A. (2005). Removal of copper (II) ions from aqueous medium by sawdust of wood. In Journal of the Chemical Society of Pakistan, 27(3): 233-238.

13.   Tabaraki, R., Nateghi, A. and Ahmady-Asbchin, S. (2014). Biosorption of lead (II) ions on Sargassum ilicifolium: Application of response surface methodology. International Biodeterioration and Biodegradation, 93: 145-152.

14.   Taşar, Ş., Kaya, F. and Özer, A. (2014). Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2(2): 1018-1026.

15.   Blázquez, G., Calero, M., Hernáinz, F., Tenorio, G. and Martín-Lara, M. A. (2010). Equilibrium biosorption of lead(II) from aqueous solutions by solid waste from olive-oil production. Chemical Engineering Journal, 160(2): 615-622.

16.   Gerola, G. P., Boas, N. V., Caetano, J., Tarley, C. R. T., Gonçalves, A. C. and Dragunski, D. C. (2013). Utilization of passion fruit skin by-product as lead(II) ion biosorbent. Water, Air, and Soil Pollution, 224(2): 1-11.

17.   Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P. V. R. and Velan, M. (2007). Application of seaweeds for the removal of lead from aqueous solution. Biochemical Engineering Journal, 33(3): 211-216.

18.   Abdel -Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H. and Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by freshwater alga Anabaena sphaerica biomass. Journal of Advanced Research, 4(4): 367-374.

19.   Putri, L. S.(2016). Biosorption of lead using macroalgae Eucheuma spinosum, Padina minor, and Sargassum crassifolium in an aqueous solution. Asian Journal of Applied Sciences, 4: 520-525.

20.   Abdel Ghafar, H. H., Abdel-Aty, A. M., Ammar, N. S. and Embaby, M. A. (2014). Lead biosorption from aqueous solution by raw and chemically modified green freshwater algae Scenedesmus obliquus. Desalination and Water Treatment, 52(40–42): 7906-7914. https://doi.org/10.1080/ 19443994.2013.856345

21.   Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y. and Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review. Journal of Environmental Chemical Engineering, 9(4): 105688.

22.   Pan, Y., Wernberg, T., de Bettignies, T., Holmer, M., Li, K., Wu, J., Lin, F., Yu, Y., Xu, J., Zhou, C., Huang, Z. and Xiao, X. (2018). Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals. Environmental Science and Pollution Research, 25(17): 16640-16651. https://doi.org/10.1007/s11356-018-1612-3

23.   Valderrama, D., Cai, J., Hishamunda, N., Ridler, N., Neish, I. C., Hurtado, A. Q., Msuya, F. E., Krishnan, M., Narayanakumar, R., Kronen, M., Robledo, D., Gasca-Leyva, E. and Fraga, J. (2015). The economics of Kappaphycus seaweed cultivation in developing countries: A comparative analysis of farming systems. Aquaculture Economics and Management, 19(2): 251-277.

24.   Rönnbäck, P., Bryceson, I. and Kautsky, N. (2002). Coastal aquaculture development in eastern Africa and the western Indian Ocean: Prospects and problems for food security and local economies. Ambio, 31(7–8): 537-542.

25.   TWAS. (2004). TWAS newsletter. pp. 1–84.

26.   Vijayaraghavan, K., Raj Jegan, J., Palanivelu, K. and Velan, M. (2004). Copper removal from aqueous solution by marine green alga Ulva reticulata. Electronic Journal of Biotechnology, 7(1): 47-54.

27.   Chove, B. E., Ballegu, W. R. and Chove, L. M. (2006). Copper and lead levels in two popular leafy vegetables grown around Morogoro Municipality, Tanzania. Tanzania Health Research Bulletin, 8(1): 37-40.

28.   Mwegoha, W. J. S. and Kihampa, C. (2010). Heavy metal contamination in agricultural soils and water in Dar es Salaam city, Tanzania. African Journal of Environmental Science and Technology, 4(11): 763-769.

29.   Shemdoe, R. S. (2010). Heavy metal concentrations in soils and leachates of Mtoni dumpsite bordering the Indian Ocean in Dar es salaam, Tanzania. Scientific Research and Essays, 5(16): 2143-2147.

30.   Awasthi, M. K., Guo, D., Awasthi, S. K., Wang, Q., Chen, H., Liu, T., Duan, Y., Soundari, P. G. and Zhang, Z. (2020). Recent advances in phytoremediation of toxic metals from contaminated sites: A road map to a safer environment. Bioremediation of Industrial Waste for Environmental Safety, 2: 77-112.

31.   Diniz, V. and Volesky, B. (2005). Biosorption of La, Eu, and Yb using Sargassum biomass. Water Research, 39(1): 239-247.

32.   Nirmal Kumar, J. I., Oommen, C. and Kumar, R. N. (2009). Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha Port, Gulf of Kutch, India. American Eurasian Journal Agriculture and Environmental Sciences, 6(3): 317-323.

33.   Luis, G., Rubio, C., Gutiérrez, Á. J., González-Weller, D., Revert, C. and Hardisson, A. (2014). Evaluation of metals in several varieties of sweet potatoes (Ipomoea batatas L.): Comparative study. Environmental Monitoring and Assessment, 186(1): 433-440.

34.   Rubio, C., Lucas, J. R. D., Gutiérrez, A. J., Glez-Weller, D., Pérez Marrero, B., Caballero, J. M., Revert, C. and Hardisson, A. (2012). Evaluation of metal concentrations in mentha herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 71: 11-17.

35.   Vieira, D. M., Da Costa, A. C. A., Henriques, C. A., Cardoso, V. L. and De França, F. P. (2007). Biosorption of lead by the brown seaweed Sargassum filipendula - Batch and continuous pilot studies. Electronic Journal of Biotechnology, 10(3): 368-375. https://doi.org/10.2225/vol10-issue3-fulltext-3 

36.   Da̧browski, A. (2001). Adsorption - From theory to practice. Advances in Colloid and Interface Science, 93(1–3): 135-224.

37.   Yang, C. hai. (1998). Statistical mechanical study on the Freundlich isotherm equation. Journal of Colloid and Interface Science, 208(2): 379-387.

38.   Hall, K. R., Eagleton, L. C., Acrivos, A. and Vermeulen, T. (1966). Pore- and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5(2): 212-223. https://doi.org/10.1021/i160018a011

39.   Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N. and Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal Of Hazardous Materials, 162(2-3): 616-645.

40.   Ho, Y. S. and Ofomaja, A. E. (2006). Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials, 129(1–3): 137-142.

41.   Sheikh, M. A., Noah, N. M., Tsuha, K. and Oomori, T. (2007). Occurrence of tributyltin compounds and characteristics of heavy metals. International Journal of Environmental Science and Technology, 4(1): 49-59.

42.   Yoonaiwong, W., Kaewsarn, P. and Reanprayoon, P. (2011). Biosorption of lead and cadmium ions by non-living aquatic macrophyte, Utricularia aurea. Sustainable Environment Research, 21(6): 369-374.

43.   Oyedepo, T. A. (2011). Biosorption of lead (II) and copper (II) metal ions on Calotropis procera (Ait.). Science Journal of Purel & Applied Chemistry, 2011: 1-7.

44.   Vilar, V. J. P., Botelho, C. M. S. and Boaventura, R. A. R. (2008). Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: Kinetics and equilibrium. Bioresource Technology, 99(4): 750-762.

45.   Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab Journal of Basic and Applied Sciences, 27(1): 183-193.

46.   Murphy, V., Hughes, H. and McLoughlin, P. (2007). Cu(II) binding by dried biomass of red, green, and brown macroalgae. Water Research, 41(4): 731-740.

47.   Vilar, V. J. P., Botelho, C. M. S. and Boaventura, R. A. R. (2008b). Lead uptake by algae Gelidium and composite material particles in a packed bed column. Chemical Engineering Journal, 144(3): 420-430.

48.   Farooq, U., Kozinski, J. A., Khan, M. A. and Athar, M. (2010). Biosorption of heavy metal ions using wheat-based biosorbents - A review of the recent literature. Bioresource Technology, 101(14): 5043-5053.

49.   Escudero, C., Fiol, N., Villaescusa, I. and Bollinger, J. C. (2009). Arsenic removal by a waste metal hydroxide entrapped into calcium alginate beads. Journal of Hazardous Materials, 164(2–3), 533–541.

50.   Yipmantin, A., Maldonado, H. J., Ly, M., Taulemesse, J. M. and Guibal, E. (2011). Pb(II) and Cd(II) biosorption on Chondracanthus chamissoi (a red alga). Journal of Hazardous Materials, 185(2–3): 922-929.

51.   Lee, S. H., & Park, C. H. (2012). Biosorption of heavy metal ions by brown seaweeds from the southern coast of Korea. Biotechnology and Bioprocess Engineering, 17(4): 853-861.

52.   Nessim, R. B., Bassiouny, A. R., Zaki, H. R., Moawad, M. N. and Kandeel, K. M. (2011). Biosorption of lead and cadmium using marine algae. Chemistry and Ecology, 27(6): 579-594.

53.   Akpomie, K. G., Ezeofor, C. C., Olikagu, C. S., Odewole, O. A. and Ezeorah, C. J. (2018). Abstraction and regeneration potential of temperature-enhanced rice husk montmorillonite combo for oil spill. Environmental Science and Pollution Research, 25(34): 34711-34719.

54.   Aroua, M. K., Leong, S. P. P., Teo, L. Y., Yin, C. Y. and Daud, W. M. A. W. (2008). Real-time determination of the kinetics of lead(II) adsorption onto palm shell-based activated carbon using an ion-selective electrode. Bioresource Technology, 99(13): 5786-5792.

55.   Wu, Y., Zhang, S., Guo, X. and Huang, H. (2008). Adsorption of chromium(III) on lignin. Bioresource Technology, 99(16): 7709-7715.

56.   Bishnoi, N. R. and Pant, A. (2004). Biosorption of copper from an aqueous solution using algal biomass. Journal of Scientific and Industrial Research, 63: 813-816.

57.   Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T. and Gong, G. (2018). Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low-cost biosorbent. Arabian Journal of Chemistry, 11(1): 99-110.

58.   Ghasemi, M., Naushad, M., Ghasemi, N. and Khosravi-fard, Y. (2014). Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: Adsorption isotherm and kinetic studies. Journal of Industrial and Engineering Chemistry, 20(4): 2193-2199.

59.   Ibrahim, W. M. (2011). Biosorption of heavy metal ions from an aqueous solution by red macroalgae. Journal of Hazardous Materials, 192(3): 1827-1835.

60.   Ozudogru, Y. (2017). Biosorption of Cu (II) and Pb (ii) ions by using marine brown algae Padina pavonica. Fresenius Environmental Bulletin, 22: 3725-3729.

61.   Arshadi, M., Amiri, M. J. and Mousavi, S. (2014). Kinetic, equilibrium, and thermodynamic investigations of Ni(II), Cd(II), Cu(II), and Co(II) adsorption on barley straw ash. Water Resources and Industry, 6: 1-17.

62.   Naiya, T. K., Bhattacharya, A. K., Mandal, S. and Das, S. K. (2009). The sorption of lead(II) ions on rice husk ash. Journal of Hazardous Materials, 163(2–3): 1254-1264.

63.   Meitei, M. D. and Prasad, M. N. V. (2014). Adsorption of Cu(II), Mn(II), and Zn(II) by Spirodela polyrhiza (L.) Schleiden: Equilibrium, kinetic and thermodynamic studies. Ecological Engineering, 71: 308-317.

64.   Al-Homaidan, A. A., Al-Houri, H. J., Al-Hazzani, A. A., Elgaaly, G. and Moubayed, N. M. S. (2014). Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian Journal of Chemistry, 7(1): 57-62.

65.   Onwuka, J. C., Ajibola, V. O., Kagbu, J. A. and Manji, A. J. (2011). Biosorption of Cr(VI) and Co(II) ions from synthetic wastewater using dead biomass of freshwater green algae Cosmarium panamense. Archives of Applied Science Research, 3(6): 191-207.

66.   Ashraf, M. A., Mahmood, K., Wajid, A., Maah, M. J. and Yusoff, I. (2011). Study of low-cost biosorbent for biosorption of heavy metals. In Proceedings of the International Conference on Food Engineering and Biotechnology, 9: pp. 60-68.

67.   Ayawei, N., Ekubo, A. T., Wankasi, D. and Dikio, E. D. (2015). Adsorption of congo red by Ni/Al-CO3: Equilibrium, thermodynamic and kinetic studies. Oriental Journal of Chemistry, 31(3): 1307-1318.

68.   Lasheen, M. R., Ammar, N. S. and Ibrahim, H. S. (2012). Adsorption/desorption of Cd(II), Cu(II), and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid-State Sciences, 14(2): 202-210.

69.   Yalçın, S. (2014). The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza. CLEAN–Soil, Air, Water, 42(3): 251-259.

70.   Weber, T. W. and Chakravorti, R. K. (1974). Pore and solid diffusion models for fixed‐bed adsorbers. AIChE Journal, 20(2): 228-238.