Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 554 - 561
THE EFFECT OF MEMBRANE THICKNESS ON THE PERFORMANCE OF
PASSIVE DIRECT ETHANOL FUEL CELLS USING A POLY VINYL ALCOHOL/GRAPHENE OXIDE
COMPOSITE MEMBRANE
(Kesan Ketebalan Membran Terhadap Prestasi Sel Fuel Etanol
Langsung Pasif Menggunakan Membran Komposit Alkohol Polivinil/Grafin Oksida)
Zulfirdaus Zakaria*
Fuel Cell Institute,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
*Corresponding author:
zulfirdaus@ukm.edu.my
Received: 27 November 2021; Accepted: 3 February 2022;
Published: 27 June 2022
Abstract
Ethanol
is a renewable fuel because it can be produced from a variety of production
sources that are non-toxic and environmentally friendly. Thus, the consumption
of passive direct ethanol fuel cells (DEFCs) as a power supply for portable
devices is intriguing and potentially marketable in the future. Unfortunately,
one constraint in the application of passive DEFCs is the lack of a Nafion
membrane replacement. The Nafion membrane is expensive and has high ethanol
permeability. We previously synthesised a crosslinked poly vinyl
alcohol/graphene oxide (PVA/GO) composite membrane for passive DEFCs using
low-cost polymer materials and successfully achieved low ethanol permeability.
Furthermore, the characterization and performance of a crosslinked PVA/GO
composite membrane outperformed that of the Nafion membrane. In the passive
DEFCs, the optimal membrane thickness is a critical parameter that influences
the membrane and single-cell performance. This experimental study attempted to
examine the effect of a crosslinked PVA/GO composite membrane thickness on
proton conductivity, ethanol permeability, membrane selectivity, and
single-cell performance. The passive DEFCs achieved a maximum performance of
7.54 mW cm-2 at 60 °C by using a crosslinked PVA/GO composite
membrane with a membrane thickness of 0.24 mm.
Keywords: polymer electrolyte membrane, membrane thickness,
passive direct ethanol fuel cells, poly (vinyl)/graphene oxide
Abstrak
Etanol merupakan bahan api yang boleh diperbaharui kerana ia
boleh dihasilkan daripada pelbagai sumber pengeluaran, tidak toksik, dan mesra
alam. Oleh itu, penggunaan sel fuel etanol langsung pasif (DEFCs) sebagai
bekalan kuasa untuk peranti mudah alih adalah menarik dan berpotensi untuk
dipasarkan pada masa hadapan. Walau bagaimanapun, satu kekangan terhadap
penggunaan DEFCs pasif adalah ketiadaan penggantian membran Nafion. Membran
Nafion adalah mahal dan mempunyai kebolehtelapan etanol yang tinggi. Sebelum
ini, kami telah mensintesis membran komposit alkohol polivinil/grafin oksida
(PVA/GO) terpaut silang untuk DEFC pasif menggunakan bahan polimer berkos
rendah dan berjaya mencapai kebolehtelapan etanol yang rendah. Tambahan lagi,
pencirian dan prestasi membran komposit PVA/GO silang mengatasi prestasi
membran Nafion. Dalam DEFCs pasif, ketebalan membran optimum ialah parameter
kritikal yang mempengaruhi prestasi membran dan sel tunggal. Kajian eksperimen
ini cuba untuk mengkaji kesan ketebalan membran komposit PVA/GO terpaut silang
terhadap kekonduksian proton, kebolehtelapan etanol, selektiviti membran, dan
prestasi sel tunggal. DEFC pasif telah memperoleh prestasi maksimum 7.54 mW cm-2
pada 60 °C melalui penggunaan membran komposit
PVA/GO bersilang dengan ketebalan membran 0.24 mm.
Kata kunci: membran
elektrolit polimer, ketebalan membrane, sel bahan api etanol langsung pasif,
alkohol polivinil/grafin oksida
Graphical Abstract
References
1. Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A. and
Hassan, S. H. A. (2021). The progress of fuel cell for Malaysian residential
consumption: Energy status and prospects to introduction as a renewable power
generation system. Renewable and Sustainable Energy Reviews, 144:
110984.
2. Akhairi, M. A. F. and
Kamarudin, S. K. (2016). Catalysts in direct ethanol fuel cell (DEFC): An
overview. International Journal of Hydrogen Energy, 41(7): 4214-4228.
3. Zakaria, Z., Kamarudin, S. K.
and Timmiati, S. N. (2016). Membranes for direct ethanol fuel cells: an
overview. Applied Energy, 163: 334-342.
4. Abdullah,
S., Kamarudin, S. K., Hasran, U. A., Masdar, M. S. and Daud, W. R. W. (2015).
Development of a conceptual design model of a direct ethanol fuel cell
(DEFC). International Journal of Hydrogen Energy, 40(35):
11943-11948.
5. Ying,
Y. P., Kamarudin, S. K. and Masdar, M. S. (2018). Silica-related membranes in
fuel cell applications: An overview. International Journal of Hydrogen
Energy, 43(33): 16068-16084.
6. Kamarudin, M. Z. F.,
Kamarudin, S. K., Masdar, M. S. and Daud, W. R. W. (2013). Direct ethanol fuel
cells. International Journal of Hydrogen Energy, 38(22): 9438-9453.
7. Liu, J. G., Zhao, T. S.,
Liang, Z. X. and Chen, R. (2006). Effect of membrane thickness on the
performance and efficiency of passive direct methanol fuel cells. Journal of
Power Sources, 153(1): 61-67.
8. Kienitz, B. (2021). Optimizing
polymer electrolyte membrane thickness to maximize fuel cell vehicle range. International
Journal of Hydrogen Energy, 46(19): 11176-11182.
9. Sudaroli, B. M. and Kolar, A.
K. (2016). An experimental study on the effect of membrane thickness and PTFE
(polytetrafluoroethylene) loading on methanol crossover in direct methanol fuel
cell. Energy, 98: 204-214.
10. Shaari, N., Zakaria, Z. and
Kamarudin, S. K. (2019). The optimization performance of cross‐linked
sodium alginate polymer electrolyte bio‐membranes in passive direct
methanol/ethanol fuel cells. International Journal of Energy Research,
43(14): 8275-8285.
11. Zakaria, Z., Kamarudin, S. K.,
Timmiati, S. N. and Masdar, M. S. (2019). New composite membrane poly (vinyl
alcohol)/graphene oxide for direct ethanol–proton exchange membrane fuel cell.
Journal of Applied Polymer Science, 136(2): 46928.
12. Hren, M., Hribernik, S.,
Gorgieva, S., Motealleh, A., Eqtesadi, S., Wendellbo, R. and Božič, M.
(2021). Chitosan-Mg (OH)2 based composite membrane containing
nitrogen doped GO for direct ethanol fuel cell. Cellulose, 28(3):
1599-1616.
13. Pereira, J. P., Falcăo, D. S.,
Oliveira, V. B. and Pinto, A. M. F. R. (2014). Performance of a passive direct
ethanol fuel cell. Journal of Power Sources, 256: 14-19.
14. Jiang, X., Sun, Y., Zhang, H.
and Hou, L. (2018). Preparation and characterization of quaternized poly (vinyl
alcohol)/chitosan/MoS2 composite anion exchange membranes with high
selectivity. Carbohydrate Polymers, 180: 96-103.
15. Taufiq Musa, M., Shaari, N.
and Kamarudin, S. K. (2021). Carbon nanotube, graphene oxide and
montmorillonite as conductive fillers in polymer electrolyte membrane for fuel
cell: an overview. International Journal of Energy Research, 45(2):
1309-1346.
16. Shaari,
N. and Kamarudin, S. K. (2017). Characterization studies of sodium
alginate/sulfonated graphene oxide based polymer electrolyte membrane for
direct methanol fuel cell. Malaysian Journal of Analytical Sciences, 21(1),
113-118.
17. Hamid,
N. S., Kamarudin, S. K. and Karim, N. A. (2021). Potential of Nafion/eggshell
composite membrane for application in direct methanol fuel cell. International
Journal of Energy Research, 45(2), 2245-2264.
18. Thiam, H. S., Daud, W. R. W.,
Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E.
H. (2013). Nafion/Pd–SiO2 nanofiber composite membranes for direct
methanol fuel cell applications. International Journal of Hydrogen Energy, 38(22):
9474-9483.
19. Yang, C. C., Chiu, S. J.,
Chien, W. C. and Chiu, S. S. (2010). Quaternized poly (vinyl alcohol)/alumina
composite polymer membranes for alkaline direct methanol fuel cells. Journal
of Power Sources, 195(8): 2212-2219.
20. An, L. and Zhao, T. S. (2011).
Performance of an alkaline-acid direct ethanol fuel cell. International
Journal of Hydrogen Energy, 36(16): 9994-9999.
21. Seweryn, J. and Lewera, A.
(2014). High selectivity of ethanol electrooxidation to carbon dioxide on
platinum nanoparticles in low temperature polymer electrolyte membrane direct
ethanol fuel cell. Applied Catalysis B: Environmental, 144: 129-134.
22. An, L.,
Zhao, T. S., Chen, R. and Wu, Q. X. (2011). A novel direct ethanol fuel cell
with high power density. Journal of power sources, 196(15): 6219-6222.