Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 554 - 561

 

 

 

 

THE EFFECT OF MEMBRANE THICKNESS ON THE PERFORMANCE OF PASSIVE DIRECT ETHANOL FUEL CELLS USING A POLY VINYL ALCOHOL/GRAPHENE OXIDE COMPOSITE MEMBRANE

 

(Kesan Ketebalan Membran Terhadap Prestasi Sel Fuel Etanol Langsung Pasif Menggunakan Membran Komposit Alkohol Polivinil/Grafin Oksida)

 

Zulfirdaus Zakaria*

 

Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: zulfirdaus@ukm.edu.my

 

 

Received: 27 November 2021; Accepted: 3 February 2022; Published:  27 June 2022

 

 

Abstract

Ethanol is a renewable fuel because it can be produced from a variety of production sources that are non-toxic and environmentally friendly. Thus, the consumption of passive direct ethanol fuel cells (DEFCs) as a power supply for portable devices is intriguing and potentially marketable in the future. Unfortunately, one constraint in the application of passive DEFCs is the lack of a Nafion membrane replacement. The Nafion membrane is expensive and has high ethanol permeability. We previously synthesised a crosslinked poly vinyl alcohol/graphene oxide (PVA/GO) composite membrane for passive DEFCs using low-cost polymer materials and successfully achieved low ethanol permeability. Furthermore, the characterization and performance of a crosslinked PVA/GO composite membrane outperformed that of the Nafion membrane. In the passive DEFCs, the optimal membrane thickness is a critical parameter that influences the membrane and single-cell performance. This experimental study attempted to examine the effect of a crosslinked PVA/GO composite membrane thickness on proton conductivity, ethanol permeability, membrane selectivity, and single-cell performance. The passive DEFCs achieved a maximum performance of 7.54 mW cm-2 at 60 °C by using a crosslinked PVA/GO composite membrane with a membrane thickness of 0.24 mm.

 

Keywords:     polymer electrolyte membrane, membrane thickness, passive direct ethanol fuel cells, poly (vinyl)/graphene oxide

 

Abstrak

Etanol merupakan bahan api yang boleh diperbaharui kerana ia boleh dihasilkan daripada pelbagai sumber pengeluaran, tidak toksik, dan mesra alam. Oleh itu, penggunaan sel fuel etanol langsung pasif (DEFCs) sebagai bekalan kuasa untuk peranti mudah alih adalah menarik dan berpotensi untuk dipasarkan pada masa hadapan. Walau bagaimanapun, satu kekangan terhadap penggunaan DEFCs pasif adalah ketiadaan penggantian membran Nafion. Membran Nafion adalah mahal dan mempunyai kebolehtelapan etanol yang tinggi. Sebelum ini, kami telah mensintesis membran komposit alkohol polivinil/grafin oksida (PVA/GO) terpaut silang untuk DEFC pasif menggunakan bahan polimer berkos rendah dan berjaya mencapai kebolehtelapan etanol yang rendah. Tambahan lagi, pencirian dan prestasi membran komposit PVA/GO silang mengatasi prestasi membran Nafion. Dalam DEFCs pasif, ketebalan membran optimum ialah parameter kritikal yang mempengaruhi prestasi membran dan sel tunggal. Kajian eksperimen ini cuba untuk mengkaji kesan ketebalan membran komposit PVA/GO terpaut silang terhadap kekonduksian proton, kebolehtelapan etanol, selektiviti membran, dan prestasi sel tunggal. DEFC pasif telah memperoleh prestasi maksimum 7.54 mW cm-2 pada 60 °C melalui penggunaan membran komposit PVA/GO bersilang dengan ketebalan membran 0.24 mm.

 

Kata kunci:     membran elektrolit polimer, ketebalan membrane, sel bahan api etanol langsung pasif, alkohol polivinil/grafin oksida

 

 


Graphical Abstract


 

 

References

1.      Zakaria, Z., Kamarudin, S. K., Abd Wahid, K. A. and Hassan, S. H. A. (2021). The progress of fuel cell for Malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system. Renewable and Sustainable Energy Reviews, 144: 110984.

2.      Akhairi, M. A. F. and Kamarudin, S. K. (2016). Catalysts in direct ethanol fuel cell (DEFC): An overview. International Journal of Hydrogen Energy, 41(7): 4214-4228.

3.      Zakaria, Z., Kamarudin, S. K. and Timmiati, S. N. (2016). Membranes for direct ethanol fuel cells: an overview. Applied Energy, 163: 334-342.

4.      Abdullah, S., Kamarudin, S. K., Hasran, U. A., Masdar, M. S. and Daud, W. R. W. (2015). Development of a conceptual design model of a direct ethanol fuel cell (DEFC). International Journal of Hydrogen Energy, 40(35): 11943-11948.

5.      Ying, Y. P., Kamarudin, S. K. and Masdar, M. S. (2018). Silica-related membranes in fuel cell applications: An overview. International Journal of Hydrogen Energy, 43(33): 16068-16084.

6.      Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S. and Daud, W. R. W. (2013). Direct ethanol fuel cells. International Journal of Hydrogen Energy, 38(22): 9438-9453.

7.      Liu, J. G., Zhao, T. S., Liang, Z. X. and Chen, R. (2006). Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. Journal of Power Sources, 153(1): 61-67.

8.      Kienitz, B. (2021). Optimizing polymer electrolyte membrane thickness to maximize fuel cell vehicle range. International Journal of Hydrogen Energy, 46(19): 11176-11182.

9.      Sudaroli, B. M. and Kolar, A. K. (2016). An experimental study on the effect of membrane thickness and PTFE (polytetrafluoroethylene) loading on methanol crossover in direct methanol fuel cell. Energy, 98: 204-214.

10.   Shaari, N., Zakaria, Z. and Kamarudin, S. K. (2019). The optimization performance of cross‐linked sodium alginate polymer electrolyte bio‐membranes in passive direct methanol/ethanol fuel cells. International Journal of Energy Research, 43(14): 8275-8285.

11.   Zakaria, Z., Kamarudin, S. K., Timmiati, S. N. and Masdar, M. S. (2019). New composite membrane poly (vinyl alcohol)/graphene oxide for direct ethanol–proton exchange membrane fuel cell. Journal of Applied Polymer Science, 136(2): 46928.

12.   Hren, M., Hribernik, S., Gorgieva, S., Motealleh, A., Eqtesadi, S., Wendellbo, R. and Božič, M. (2021). Chitosan-Mg (OH)2 based composite membrane containing nitrogen doped GO for direct ethanol fuel cell. Cellulose, 28(3): 1599-1616.

13.   Pereira, J. P., Falcăo, D. S., Oliveira, V. B. and Pinto, A. M. F. R. (2014). Performance of a passive direct ethanol fuel cell. Journal of Power Sources, 256: 14-19.

14.   Jiang, X., Sun, Y., Zhang, H. and Hou, L. (2018). Preparation and characterization of quaternized poly (vinyl alcohol)/chitosan/MoS2 composite anion exchange membranes with high selectivity. Carbohydrate Polymers, 180: 96-103.

15.   Taufiq Musa, M., Shaari, N. and Kamarudin, S. K. (2021). Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview. International Journal of Energy Research, 45(2): 1309-1346.

16.   Shaari, N. and Kamarudin, S. K. (2017). Characterization studies of sodium alginate/sulfonated graphene oxide based polymer electrolyte membrane for direct methanol fuel cell. Malaysian Journal of Analytical Sciences, 21(1), 113-118.

17.   Hamid, N. S., Kamarudin, S. K. and Karim, N. A. (2021). Potential of Nafion/eggshell composite membrane for application in direct methanol fuel cell. International Journal of Energy Research45(2), 2245-2264.

18.   Thiam, H. S., Daud, W. R. W., Kamarudin, S. K., Mohamad, A. B., Kadhum, A. A. H., Loh, K. S. and Majlan, E. H. (2013). Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications. International Journal of Hydrogen Energy, 38(22): 9474-9483.

19.   Yang, C. C., Chiu, S. J., Chien, W. C. and Chiu, S. S. (2010). Quaternized poly (vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. Journal of Power Sources, 195(8): 2212-2219.

20.   An, L. and Zhao, T. S. (2011). Performance of an alkaline-acid direct ethanol fuel cell. International Journal of Hydrogen Energy, 36(16): 9994-9999.

21.   Seweryn, J. and Lewera, A. (2014). High selectivity of ethanol electrooxidation to carbon dioxide on platinum nanoparticles in low temperature polymer electrolyte membrane direct ethanol fuel cell. Applied Catalysis B: Environmental, 144: 129-134.

22.   An, L., Zhao, T. S., Chen, R. and Wu, Q. X. (2011). A novel direct ethanol fuel cell with high power density. Journal of power sources, 196(15): 6219-6222.