Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 520 - 531
CONSTRUCTING NI-DOPED ZnO/GO
HETEROSTUCTURES FOR ENHANCED SUNLIGHT-TRIGGERED DEGRADATION OF METHYLENE BLUE
DYE
(Pembinaan Heterostruktur
Ni-Didop dengan ZnO/GO untuk Meningkatkan Degradasi Pewarna Metilina Biru di
Bawah Sinar Matahari)
Hartini
Ahmad Rafaie1,5*, Nur Shafiza Ismail1, Syazni Hanun Nur
Ili Dedy Dasiano2,4, Muhd Firdaus Kasim3, Nurul Infaza
Talalah Ramli1, Zul Adlan Mohd Hir1, Mohomad Hafiz Mamat4
1Faculty of Applied Science,
Universiti Teknologi MARA Pahang,
26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
2Faculty of Applied Sciences
3Center for Nanomaterials Research,
Institute of Science
4NANO-Electronic Centre, Faculty of
Electrical Engineering
Universiti Teknologi MARA, 40450 Shah Alam,
Selangor, Malaysia
5Centre of
Foundation Studies,
Universiti Teknologi MARA,
Selangor Branch, Dengkil Campus, 43800 Dengkil, Selangor, Malaysia
*Corresponding author:
hartinirafaie@uitm.edu.my
Received: 15 November 2021 ;
Accepted: 3 February 2022 ; Published: 27 June 2022
Abstract
Chemical pollutants emitted by the textile industry are a major source
of water contamination, resulting in dangerous diseases and most of the
effluent treatment techniques are relatively ineffective. As a result, metal
oxide-based photocatalysts emerged as a viable alternative to the already
existing dye treatment methods. The current work focused on the synthesis and
characterization of Ni-doped ZnO/GO heterostructures and evaluation of its
photoactivity under sunlight irradiation. The nanocomposite was prepared via a
simple mixing approach, by varying the weight ratio of graphene oxide (GO)
ranging from 0.1 to 0.4 g prior to the incorporation into Ni-doped ZnO
surfaces. The X-ray diffraction analysis revealed that Ni and GO were
successfully incorporated into the wurtzite-structure of ZnO nanocomposites.
FESEM images showed a uniformed particle with the average size of about 100-500
nm for all samples. The photocatalytic activity was assessed by monitoring the
degradation of methylene blue (MB) dye under direct sunlight irradiation.
Ni-doped ZnO/GO0.1 nanocomposite exhibited the greatest
degradation performance by degrading 94% MB. The highest degradation rate
constant of 0.0250 min-1 was obtained within 120 minutes of reaction
time. The current study is easy, effective, and compatible; hence it can be
employed in the future to treat textile dye wastewater.
Keywords: graphene oxide, methylene blue, nickel, photodegradation, sunlight
Abstrak
Bahan pencemar kimia yang dikeluarkan
oleh industri tekstil merupakan sumber utama pencemaran air, mengakibatkan
penyakit berbahaya dan kebanyakan kaedah rawatan sisa bahan buangan yang dicipta
masih tidak berkesan sepenuhnya. Justeru, fotomangkin berasaskan logam oksida
dihasilkan sebagai alternatif yang berdaya maju bagi kaedah rawatan pewarna
sedia ada. Penumpuan kepada sintesis dan pencirian yang mudah bagi
heterostruktur ZnO/GO yang didopkan dengan Ni dan penilaian fotoaktivitinya di
bawah cahaya matahari. Nanokomposit disediakan melalui kaedah campuran yang
ringkas dengan mengubah nisbah berat grafin oksida (GO) diantara 0.1 hingga 0.4
g sebelum dimasukkan ke dalam permukaan ZnO berdop Ni. Analisis pembelauan
sinar-X mendedahkan bahawa Ni dan GO telah berjaya dimasukkan ke dalam struktur
ZnO. Imej FESEM menunjukkan partikel seragam dengan saiz purata diantara
100-500 nm untuk semua sampel. Aktiviti fotokatalitik dinilai dengan memantau
degradasi pewarna metilina biru (MB) di bawah penyinaran cahaya matahari secara
lansung. Nanokomposit ZnO/GO0.1 berdop Ni mempamerkan prestasi
degradasi yang paling tinggi dengan nilai peratus degradasi 94% MB. Pemalar
kadar degradasi tertinggi ialah 0.0250 min-1 diperolehi dalam masa
120 minit masa tindak balas. Kajian ini didapati mudah, berkesan dan sesuai,
justeru ia boleh digunakan pada masa hadapan untuk merawat sisa buangan pewarna
dari industri tekstil.
Kata
kunci: grafin oksida, metilina biru, nikel, fotodegradasi, cahaya
matahari
Graphical Abstract
References
1. Jeyasubramanian, K., Hikku, G. S. and
Sharma, R. K. (2015). Photo-catalytic degradation of methyl violet dye using
zinc oxide nano particles prepared by a novel precipitation method and its
anti-bacterial activities. Journal of Water Process Engineering, 8: 35-44.
2. Subbaiah, M. V. and Kim, D. S.
(2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin
seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology
and environmental safety, 128:109-117.
3. Peter, A., Mihaly-Cozmuta, A.,
Nicula, C., Mihaly-Cozmuta, L., Jastrzębska, A., Olszyna, A. and Baia, L.
(2017). UV light-assisted degradation of methyl orange, methylene blue, phenol,
salicylic acid, and rhodamine B: photolysis versus photocatalyis. Water,
Air, & Soil Pollution, 228(1):
1-12.
4. Kheirabadi, M., Samadi, M.,
Asadian, E., Zhou, Y., Dong, C., Zhang, J. and Moshfegh, A. Z. (2019).
Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption,
photocatalysis and physical separation capabilities. Journal of Colloid
and Interface Science, 537:
66-78.
5. Jothibas, M., Manoharan, C.,
Jeyakumar, S. J., Praveen, P., Punithavathy, I. K. and Richard, J. P. (2018).
Synthesis and enhanced photocatalytic property of Ni doped ZnS
nanoparticles. Solar Energy, 159: 434-443.
6. Rafaie, H. A., Nor, R. M.,
Azmina, M. S., Ramli, N. I. T. and Mohamed, R. (2017). Decoration of ZnO microstructures
with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue
dye. Journal of Environmental Chemical Engineering, 5(4):
3963-3972.
7. Syazwani, O. N., Mohd Hir, Z.
A., Mukhair, H., Mastuli, M. S. and Abdullah, A. H. (2019). Designing
visible-light-driven photocatalyst of Ag3PO4/CeO2
for enhanced photocatalytic activity under low light irradiation. Journal
of Materials Science: Materials in Electronics, 30(1): 415-423.
8. Asghar, A., Raman, A. A. A. and
Daud, W. M. A. W. (2015). Advanced oxidation processes for in-situ production
of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a
review. Journal of Cleaner Production, 87: 826-838.
9. Mohd Hir, Z. A., Abdullah, A.
H., Zainal, Z. and Lim, H. N. (2017). Photoactive hybrid film photocatalyst of
polyethersulfone-ZnO for the degradation of methyl orange dye: Kinetic study
and operational parameters. Catalysts, 7(11): 313.
10. Khaki, M. R. D., Shafeeyan, M.
S., Raman, A. A. A. and Daud, W. M. A. W. (2017). Application of doped
photocatalysts for organic pollutant degradation-A review. Journal of
Environmental Management, 198:
78-94.
11. Bora, L. V. and Mewada, R. K. (2017).
Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals,
mechanisms and parametric review. Renewable
and Sustainable Energy Reviews, 76: 1393-1421.
12. Ahmed, S. N. and Haider, W. (2018).
Heterogeneous photocatalysis and its potential applications in water and
wastewater treatment: a review. Nanotechnology,
29(34): 342001.
13. Wang, P., Wu, D., Ao, Y., Wang, C. and Hou, J.
(2016). ZnO nanorod arrays co-loaded with Au nanoparticles and reduced graphene
oxide: Synthesis, characterization and photocatalytic application. Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 492: 71-78.
14. Zhu, P., Duan, M., Wang, R., Xu, J., Zou, P.
and Jia, H. (2020). Facile synthesis of ZnO/GO/Ag3PO4
heterojunction photocatalyst with excellent photodegradation activity for
tetracycline hydrochloride under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
602: 125118.
15. Upadhyay, G. K., Rajput, J. K., Pathak, T. K.,
Kumar, V. and Purohit, L. P. (2019). Synthesis of ZnO: TiO2
nanocomposites for photocatalyst application in visible light. Vacuum, 160: 154-163.
16. Muñoz-Fernandez, L., Sierra-Fernández, A.,
Milošević, O. and Rabanal, M. E. (2016). Solvothermal synthesis of Ag/ZnO
and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on
dyes degradation. Advanced Powder
Technology, 27(3): 983-993.
17. Xie, M., Zhang, D., Wang, Y. and Zhao, Y.
(2020). Facile fabrication of ZnO nanorods modified with RGO for enhanced
photodecomposition of dyes. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 603: 125247.
18. Wang, W., Li, N., Hong, K.,
Guo, H., Ding, R. and Xia, Z. (2019). Z-scheme recyclable photocatalysts based
on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: enhanced
activity under UV and visible irradiation. Journal of Alloys and
Compounds, 777:
1108-1114.
19. Tawale, J. S., Kumar, A.,
Swati, G., Haranath, D., Dhoble, S. J. and Srivastava, A. K. (2018). Microstructural
evolution and photoluminescence performanance of nickel and chromium doped ZnO
nanostructures. Materials Chemistry and Physics, 205: 9-15.
20. Gao, P., Ng, K. and Sun, D. D. (2013).
Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and
disinfection under visible light. Journal
of Hazardous Materials, 262: 826-835.
21. Ahmad, M., Ahmed, E., Hong, Z. L., Khalid, N.
R., Ahmed, W. and Elhissi, A. (2013). Graphene–Ag/ZnO nanocomposites as high
performance photocatalysts under visible light irradiation. Journal of
Alloys and Compounds, 577: 717-727.
22. Haghshenas, S. S. P., Nemati, A., Simchi, A.
and Kim, C. U. (2019). Dispute in photocatalytic and photoluminescence behavior
in ZnO/graphene oxide core-shell nanoparticles. Materials Letters, 240:
117-120.
23. Moussa, H., Girot, E., Mozet, K., Alem, H.,
Medjahdi, G. and Schneider, R. (2016). ZnO rods/reduced graphene oxide
composites prepared via a solvothermal reaction for efficient sunlight-driven
photocatalysis. Applied Catalysis B: Environmental, 185: 11-21.
24. Wu, Z. and Wang, L. (2019). Graphene oxide
(GO) doping hexagonal flower-like ZnO as potential enhancer of photocatalytic
ability. Materials Letters, 234: 287-290.
25. Długosz, O., Szostak, K., Krupiński,
M. and Banach, M. (2021). Synthesis of Fe3O4/ZnO nanoparticles
and their application for the photodegradation of anionic and cationic dyes. International
Journal of Environmental Science and Technology, 18(3): 561-574.
26. Huszla, K., Wysokowski, M.,
Zgoła-Grześkowiak, A., Staszak, M., Janczarek, M., Jesionowski, T.
and Wyrwas, B. (2022). UV-light photocatalytic degradation of non-ionic
surfactants using ZnO nanoparticles. International Journal of Environmental
Science and Technology, 19(1): 173-188.
27. Li, J., Li, P., Li, J., Tian, Z. and Yu, F.
(2019). Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2
support for an enhanced CO methanation performance. Catalysts, 9(6):
506.
28. Rafaie, H. A., Embong, N. A., Ramli, N. I.,
Mohamed, R. and Kasim, M. F. (2018). Synthesis of ZnO microstructure decorated
with ag nanoparticles at different annealing temperature and their
photocatalytic activity. Recent Innovations in Chemical Engineering
(Formerly Recent Patents on Chemical Engineering), 11(3): 192-200.
29. Behnood, R. and Sodeifian, G. (2020).
Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light
photodegradation of organic pollutants. Journal of Environmental Chemical
Engineering, 8(4), 103821.
30. Yin, Q., Qiao, R., Li, Z., Zhang, X. L. and
Zhu, L. (2015). Hierarchical nanostructures of nickel-doped zinc oxide:
Morphology controlled synthesis and enhanced visible-light photocatalytic
activity. Journal of Alloys and Compounds, 618: 318-325.
31.
Julkapli, N. M. and Bagheri, S. (2015). Graphene supported heterogeneous
catalysts: an overview. International Journal of Hydrogen Energy, 40(2):
948-979.
32. Ahmad, M., Ahmed, E., Ahmed, W., Elhissi, A.,
Hong, Z. L. and Khalid, N. R. (2014). Enhancing visible light responsive
photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceramics
International, 40(7): 10085-10097.
33. Qin, J., Zhang, X., Xue, Y., Kittiwattanothai,
N., Kongsittikul, P., Rodthongkum, N. and Liu, R. (2014). A facile synthesis of
nanorods of ZnO/graphene oxide composites with enhanced photocatalytic
activity. Applied Surface Science, 321: 226-232.
34. Tju, H., Shabrany, H., Taufik, A. and Saleh,
R. (2017). Degradation of methylene blue (MB) using ZnO/CeO2/nanographene
platelets (NGP) photocatalyst: Effect of various concentration of NGP. In AIP
Conference Proceedings, 1862: p. 030037.