Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 520 - 531

 

 

 

 

CONSTRUCTING NI-DOPED ZnO/GO HETEROSTUCTURES FOR ENHANCED SUNLIGHT-TRIGGERED DEGRADATION OF METHYLENE BLUE DYE

 

(Pembinaan Heterostruktur Ni-Didop dengan ZnO/GO untuk Meningkatkan Degradasi Pewarna Metilina Biru di Bawah Sinar Matahari)

 

Hartini Ahmad Rafaie1,5*, Nur Shafiza Ismail1, Syazni Hanun Nur Ili Dedy Dasiano2,4, Muhd Firdaus Kasim3, Nurul Infaza Talalah Ramli1, Zul Adlan Mohd Hir1, Mohomad Hafiz Mamat4

 

1Faculty of Applied Science,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

2Faculty of Applied Sciences

3Center for Nanomaterials Research, Institute of Science

4NANO-Electronic Centre, Faculty of Electrical Engineering

 Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

5Centre of Foundation Studies,

Universiti Teknologi MARA, Selangor Branch, Dengkil Campus, 43800 Dengkil, Selangor, Malaysia

 

*Corresponding author:  hartinirafaie@uitm.edu.my

 

 

Received: 15 November 2021 ; Accepted: 3 February 2022 ; Published: 27 June 2022 

 

 

Abstract

Chemical pollutants emitted by the textile industry are a major source of water contamination, resulting in dangerous diseases and most of the effluent treatment techniques are relatively ineffective. As a result, metal oxide-based photocatalysts emerged as a viable alternative to the already existing dye treatment methods. The current work focused on the synthesis and characterization of Ni-doped ZnO/GO heterostructures and evaluation of its photoactivity under sunlight irradiation. The nanocomposite was prepared via a simple mixing approach, by varying the weight ratio of graphene oxide (GO) ranging from 0.1 to 0.4 g prior to the incorporation into Ni-doped ZnO surfaces. The X-ray diffraction analysis revealed that Ni and GO were successfully incorporated into the wurtzite-structure of ZnO nanocomposites. FESEM images showed a uniformed particle with the average size of about 100-500 nm for all samples. The photocatalytic activity was assessed by monitoring the degradation of methylene blue (MB) dye under direct sunlight irradiation. Ni-doped ZnO/GO0.1 nanocomposite exhibited the greatest degradation performance by degrading 94% MB. The highest degradation rate constant of 0.0250 min-1 was obtained within 120 minutes of reaction time. The current study is easy, effective, and compatible; hence it can be employed in the future to treat textile dye wastewater.

 

Keywords:  graphene oxide, methylene blue, nickel, photodegradation, sunlight

 

Abstrak

Bahan pencemar kimia yang dikeluarkan oleh industri tekstil merupakan sumber utama pencemaran air, mengakibatkan penyakit berbahaya dan kebanyakan kaedah rawatan sisa bahan buangan yang dicipta masih tidak berkesan sepenuhnya. Justeru, fotomangkin berasaskan logam oksida dihasilkan sebagai alternatif yang berdaya maju bagi kaedah rawatan pewarna sedia ada. Penumpuan kepada sintesis dan pencirian yang mudah bagi heterostruktur ZnO/GO yang didopkan dengan Ni dan penilaian fotoaktivitinya di bawah cahaya matahari. Nanokomposit disediakan melalui kaedah campuran yang ringkas dengan mengubah nisbah berat grafin oksida (GO) diantara 0.1 hingga 0.4 g sebelum dimasukkan ke dalam permukaan ZnO berdop Ni. Analisis pembelauan sinar-X mendedahkan bahawa Ni dan GO telah berjaya dimasukkan ke dalam struktur ZnO. Imej FESEM menunjukkan partikel seragam dengan saiz purata diantara 100-500 nm untuk semua sampel. Aktiviti fotokatalitik dinilai dengan memantau degradasi pewarna metilina biru (MB) di bawah penyinaran cahaya matahari secara lansung. Nanokomposit ZnO/GO0.1 berdop Ni mempamerkan prestasi degradasi yang paling tinggi dengan nilai peratus degradasi 94% MB. Pemalar kadar degradasi tertinggi ialah 0.0250 min-1 diperolehi dalam masa 120 minit masa tindak balas. Kajian ini didapati mudah, berkesan dan sesuai, justeru ia boleh digunakan pada masa hadapan untuk merawat sisa buangan pewarna dari industri tekstil.

 

Kata kunci:  grafin oksida, metilina biru, nikel, fotodegradasi, cahaya matahari


 


Graphical Abstract


 

 

References

1.    Jeyasubramanian, K., Hikku, G. S. and Sharma, R. K. (2015). Photo-catalytic degradation of methyl violet dye using zinc oxide nano particles prepared by a novel precipitation method and its anti-bacterial activities. Journal of Water Process Engineering8: 35-44.

2.    Subbaiah, M. V. and Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and environmental safety128:109-117.

3.    Peter, A., Mihaly-Cozmuta, A., Nicula, C., Mihaly-Cozmuta, L., Jastrzębska, A., Olszyna, A. and Baia, L. (2017). UV light-assisted degradation of methyl orange, methylene blue, phenol, salicylic acid, and rhodamine B: photolysis versus photocatalyis. Water, Air, & Soil Pollution228(1): 1-12.

4.    Kheirabadi, M., Samadi, M., Asadian, E., Zhou, Y., Dong, C., Zhang, J. and Moshfegh, A. Z. (2019). Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities. Journal of Colloid and Interface Science537: 66-78.

5.    Jothibas, M., Manoharan, C., Jeyakumar, S. J., Praveen, P., Punithavathy, I. K. and Richard, J. P. (2018). Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Solar Energy159: 434-443.

6.    Rafaie, H. A., Nor, R. M., Azmina, M. S., Ramli, N. I. T. and Mohamed, R. (2017). Decoration of ZnO microstructures with Ag nanoparticles enhanced the catalytic photodegradation of methylene blue dye. Journal of Environmental Chemical Engineering5(4): 3963-3972.

7.    Syazwani, O. N., Mohd Hir, Z. A., Mukhair, H., Mastuli, M. S. and Abdullah, A. H. (2019). Designing visible-light-driven photocatalyst of Ag3PO4/CeO2 for enhanced photocatalytic activity under low light irradiation. Journal of Materials Science: Materials in Electronics30(1): 415-423.

8.    Asghar, A., Raman, A. A. A. and Daud, W. M. A. W. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production87: 826-838.

9.    Mohd Hir, Z. A., Abdullah, A. H., Zainal, Z. and Lim, H. N. (2017). Photoactive hybrid film photocatalyst of polyethersulfone-ZnO for the degradation of methyl orange dye: Kinetic study and operational parameters. Catalysts7(11): 313.

10.  Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. and Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation-A review. Journal of Environmental Management198: 78-94.

11.  Bora, L. V. and Mewada, R. K. (2017). Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renewable and Sustainable Energy Reviews, 76: 1393-1421.

12.  Ahmed, S. N. and Haider, W. (2018). Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 29(34): 342001.

13.  Wang, P., Wu, D., Ao, Y., Wang, C. and Hou, J. (2016). ZnO nanorod arrays co-loaded with Au nanoparticles and reduced graphene oxide: Synthesis, characterization and photocatalytic application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492: 71-78.

14.  Zhu, P., Duan, M., Wang, R., Xu, J., Zou, P. and Jia, H. (2020). Facile synthesis of ZnO/GO/Ag3PO4 heterojunction photocatalyst with excellent photodegradation activity for tetracycline hydrochloride under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602: 125118.

15.  Upadhyay, G. K., Rajput, J. K., Pathak, T. K., Kumar, V. and Purohit, L. P. (2019). Synthesis of ZnO: TiO2 nanocomposites for photocatalyst application in visible light. Vacuum, 160: 154-163.

16.  Muñoz-Fernandez, L., Sierra-Fernández, A., Milošević, O. and Rabanal, M. E. (2016). Solvothermal synthesis of Ag/ZnO and Pt/ZnO nanocomposites and comparison of their photocatalytic behaviors on dyes degradation. Advanced Powder Technology, 27(3): 983-993.

17.  Xie, M., Zhang, D., Wang, Y. and Zhao, Y. (2020). Facile fabrication of ZnO nanorods modified with RGO for enhanced photodecomposition of dyes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603: 125247.

18.  Wang, W., Li, N., Hong, K., Guo, H., Ding, R. and Xia, Z. (2019). Z-scheme recyclable photocatalysts based on flower-like nickel zinc ferrite nanoparticles/ZnO nanorods: enhanced activity under UV and visible irradiation. Journal of Alloys and Compounds777: 1108-1114.

19.  Tawale, J. S., Kumar, A., Swati, G., Haranath, D., Dhoble, S. J. and Srivastava, A. K. (2018). Microstructural evolution and photoluminescence performanance of nickel and chromium doped ZnO nanostructures. Materials Chemistry and Physics205: 9-15.

20.  Gao, P., Ng, K. and Sun, D. D. (2013). Sulfonated graphene oxide–ZnO–Ag photocatalyst for fast photodegradation and disinfection under visible light. Journal of Hazardous Materials, 262: 826-835.

21.  Ahmad, M., Ahmed, E., Hong, Z. L., Khalid, N. R., Ahmed, W. and Elhissi, A. (2013). Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. Journal of Alloys and Compounds, 577: 717-727.

22.  Haghshenas, S. S. P., Nemati, A., Simchi, A. and Kim, C. U. (2019). Dispute in photocatalytic and photoluminescence behavior in ZnO/graphene oxide core-shell nanoparticles. Materials Letters, 240: 117-120.

23.  Moussa, H., Girot, E., Mozet, K., Alem, H., Medjahdi, G. and Schneider, R. (2016). ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Applied Catalysis B: Environmental, 185: 11-21.

24.  Wu, Z. and Wang, L. (2019). Graphene oxide (GO) doping hexagonal flower-like ZnO as potential enhancer of photocatalytic ability. Materials Letters, 234: 287-290.

25.  Długosz, O., Szostak, K., Krupiński, M. and Banach, M. (2021). Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. International Journal of Environmental Science and Technology, 18(3): 561-574.

26.  Huszla, K., Wysokowski, M., Zgoła-Grześkowiak, A., Staszak, M., Janczarek, M., Jesionowski, T. and Wyrwas, B. (2022). UV-light photocatalytic degradation of non-ionic surfactants using ZnO nanoparticles. International Journal of Environmental Science and Technology, 19(1): 173-188.

27.  Li, J., Li, P., Li, J., Tian, Z. and Yu, F. (2019). Highly-dispersed Ni-NiO nanoparticles anchored on an SiO2 support for an enhanced CO methanation performance. Catalysts, 9(6): 506.

28.  Rafaie, H. A., Embong, N. A., Ramli, N. I., Mohamed, R. and Kasim, M. F. (2018). Synthesis of ZnO microstructure decorated with ag nanoparticles at different annealing temperature and their photocatalytic activity. Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering), 11(3): 192-200.

29.  Behnood, R. and Sodeifian, G. (2020). Synthesis of N doped-CQDs/Ni doped-ZnO nanocomposites for visible light photodegradation of organic pollutants. Journal of Environmental Chemical Engineering, 8(4), 103821.

30.  Yin, Q., Qiao, R., Li, Z., Zhang, X. L. and Zhu, L. (2015). Hierarchical nanostructures of nickel-doped zinc oxide: Morphology controlled synthesis and enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 618: 318-325.

31. Julkapli, N. M. and Bagheri, S. (2015). Graphene supported heterogeneous catalysts: an overview. International Journal of Hydrogen Energy, 40(2): 948-979.

32.  Ahmad, M., Ahmed, E., Ahmed, W., Elhissi, A., Hong, Z. L. and Khalid, N. R. (2014). Enhancing visible light responsive photocatalytic activity by decorating Mn-doped ZnO nanoparticles on graphene. Ceramics International, 40(7): 10085-10097.

33.  Qin, J., Zhang, X., Xue, Y., Kittiwattanothai, N., Kongsittikul, P., Rodthongkum, N. and Liu, R. (2014). A facile synthesis of nanorods of ZnO/graphene oxide composites with enhanced photocatalytic activity. Applied Surface Science, 321: 226-232.

34.  Tju, H., Shabrany, H., Taufik, A. and Saleh, R. (2017). Degradation of methylene blue (MB) using ZnO/CeO2/nanographene platelets (NGP) photocatalyst: Effect of various concentration of NGP. In AIP Conference Proceedings, 1862: p. 030037.