Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 507 - 519

 

 

 

 

THE REMOVAL OF BISPHENOL-A FROM SYNTHETIC WASTEWATER USING THIN-FILM COMPOSITE MEMBRANE

 

(Penyingkiran Bisfenol A daripada Sisa Air Sintetik Mengunakan Membran Lapisan Komposit Nipis)

 

Taofiq Damilare Aiyelabegan , Siti Nur Alwani Shafie, Shafiq Mohd Hizam, Nik Abdul Hadi Nordin*

 

Department of Chemical Engineering,

Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

 

*Corresponding author:  nahadi.sapiaa@utp.edu.my

 

Received: 22 August 2021; Accepted: 24 March 2022; Published: 27 June 2022 

 

 

Abstract

In this study, the removal performance of bisphenol A (BPA) from synthetic wastewater using the forward osmosis method was compared between polyamide thin film composite membrane (PA -TFC) and polysulfone (PSf) membrane substrate. The thin-film composite membrane was prepared by using flat polysulfone (PSf) sheets as membrane substrate through in-situ interfacial polymerization technique. To generate the thin film surface on the PSf substrate, M-phenylenediamine (MPD) and 1,3,5-benzene trichloride (TMC) were utilized as monomers in aqueous and organic solutions, respectively. The BPA retention efficiency of the PSf and TFC membranes was examined and compared accordingly. The membranes were characterized by using atomic force microscopy (AFM), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and contact angle analysis. The fabricated thin film on the PSf substrate membrane has enhanced its hydrophilicity which aids in wastewater treatment by increasing the membrane’s water flow rate. A synthetic BPA wastewater solution of 100 mgL-1 was prepared to evaluate the performance of the membrane. Based on the finding of this study, the PSf substrate and PA -TFC membrane yielded 25% and 91% of BPA removal from the feed solution, respectively.

 

Keywords:  bisphenol-a, polyamide, thin-film composite membrane, forward osmosis

 

Abstrak

Dalam kajian ini, penyingkiran bisfenol A (BPA) dari air sisa sintetik disiasat menggunakan membran filem komposit nipis poliamida (PA -TFC) dan dibandingkan dengan substrat membran polisulfon (PSf) menggunakan proses osmosis hadapan. Membran TFC diperbuat melalui teknik pempolimeran dengan menggunakan permukaan PSf sebagai substrat membran. M-fenildiamina (MPD) dan 1,3,5-benzena triklorida (TMC) digunakan sebagai monomer dalam larutan berair dan organik untuk menghasilkan permukaan filem nipis pada substrat PSf. Penyingkiran BPA melalui membran PSf dan TFC disiasat dan dibandingkan. Setiap membran dicirikan dengan mikroskopi tekanan atom (AFM), mikroskopi imbasan elektron pancaran medan (FESEM), spektroskopi inframerah transformasi Fourier (FTIR) dan analisa sudut sentuhan. Lapisan filem nipis yang dihasilkan pada membran substrat PSf meningkatkan daya hidrofiliknya, yang membantu dalam rawatan air sisa dengan meningkatkan kadar pengeluaran air. 100 ppm larutan sisa air BPA sintetik disediakan untuk menguji prestasi membran. Dari data yang diperoleh dari kajian ini, substrat PSf dan membran PA -TFC menghasilkan 25% dan 91% penurasan BPA dari sisa tersebut.

 

Kata kunci:  bisfenol a, poliamida, membran filem komposit nipis, osmosis hadapan

 

 


Graphical Abstract


 

 

References

1.      Li, J., Liu, Q., Liu, Y. and Xie, J. (2017). Development of electro-active forward osmosis membranes to remove phenolic compounds and reject salts. Environmental Science: Water Research & Technology, 3(1): 139-146.

2.      Silva, C. P., Otero, M. and Esteves, V. (2012). Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution, 165: 38-58.

3.      Xiao, M., Zhou, J., Tan, Y., Zhang, A., Xia, Y. and Ji, L. (2006). Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber. Desalination, 195(1-3): 281-293.

4.      Mohammadi, S., Kargari, A., Sanaeepur, H., Abbassian, K., Najafi, A. and Mofarrah, E. (2015). Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 53(8): 2215-2234.

5.      Huang, Y. Q., Wong, C. K. C., Zheng, J. S., Bouwman, H., Barra, R., Wahlström, B., Neretin, L., & Wong, M. H. (2012). Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environment International, 42: 91-99.

6.      Kumar, A., Gupta, K., Tomer, V., Kaur, A., & Kumar, V. (2018). Bisphenols as human health hazard: A systematic review on potent sources, route of exposure, harmful effects and safe alternatives. Toxicology International, 25(1): 78–-92.

7.      Katibi, K. K., Yunos, K. F., Man, H. C., Aris, A. Z., Mohd Nor, M. Z. and Azis, R. S. (2021). Recent advances in the rejection of endocrine-disrupting compounds from water using membrane and membrane bioreactor technologies: A review. Polymers, 13(3): 392.

8.      Tsai, W. T. (2006). Human health risk on environmental exposure to bisphenol-A: A review. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 24(2), 225-255.

9.      Rubin, B. S. (2011). Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. Journal of Steroid Biochemistry and Molecular Biology, 127(1–2): 27-34.

10.   Viñas, R., Jeng, Y. J. and Watson, C. S. (2012). Non-genomic effects of xenoestrogen mixtures. International Journal of Environmental Research and Public Health, 9(8): 2694-2714.

11.   Zoeller, R. T., & Belcher, S. M. (2007). In vitro molecular mechanisms of bisphenol A action. Reproductive Toxicology, 24(2): 178-198.

12.   Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42: 132-155.

13.   Kundakovic, M. and Champagne, F. A. (2011). Epigenetic perspective on the developmental effects of bisphenol A. Brain, Behavior, and Immunity, 25(6): 1084-1093.

14.   Chen, H. W., Liang, C. H., Wu, Z. M., Chang, E. E., Lin, T. F., Chiang, P. C. and Wang, G. S. (2013). Occurrence and assessment of treatment efficiency of nonylphenol, octylphenol and bisphenol-A in drinking water in Taiwan. Science of the Total Environment, 449: 20-28.

15.   Kleywegt, S., Pileggi, V., Yang, P., Hao, C., Zhao, X., Rocks, C., Thach, S., Cheung, P. and Whitehead, B. (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada - Occurrence and treatment efficiency. Science of the Total Environment, 409(8): 1481-1488.

16.   Sodré, F. F., Locatelli, M. A. F. and Jardim, W. F. (2010). Occurrence of emerging contaminants in Brazilian drinking waters: A sewage-to-tap issue. Water, Air, and Soil Pollution, 206(1–4): 57-67.

17.   Muhamad, M. S., Salim, M. R., Lau, W. J. and Yusop, Z. (2016). A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environmental Science and Pollution Research, 23(12): 11549-11567.

18.   Yüksel, S., Kabay, N. and Yüksel, M. (2013). Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Journal of Hazardous Materials, 263: 307-310.

19.   Mehwish, N., Kausar, A. and Siddiq, M. (2014). Advances in Polymer-based Nanostructured Membranes for Water Treatment. Polymer - Plastics Technology and Engineering, 53(12): 1290-1316.

20.   Kim, I. C. And Lee, K. H. (2003). Effect of various additives on pore size of polysulfone membrane by phase-inversion process. Journal of Applied Polymer Science, 89(9): 2562-2566. 

21.   Zhao, F. B., Tang, C. C., Liu, X. Y., Shi, F. J., Song, X. R., Tian, Y. and Li, Z. S. (2015). Transportation characteristics of bisphenol A on ultrafiltration membrane with low molecule weight cut-off. Desalination, 362: 18-25.

22.   Heo, J., Flora, J. R. V., Her, N., Park, Y. G., Cho, J., Son, A. and Yoon, Y. (2012). Removal of bisphenol A and 17β-estradiol in single walled carbon nanotubes-ultrafiltration (SWNTs-UF) membrane systems. Separation and Purification Technology, 90: 39-52.

23.   Bing-zhi, D., Hua-qiang, C., Lin, W., Sheng-ji, X. and Nai-yun, G. (2010). The removal of bisphenol A by hollow fiber microfiltration membrane. Desalination, 250(2): 693-697.

24.   Yüksel, S., Kabay, N. and Yüksel, M. (2013). Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Journal of Hazardous Materials, 263: 307-310.

25.   Lutchmiah, K., Verliefde, A. R. D., Roest, K., Rietveld, L. C. and Cornelissen, E. R. (2014). Forward osmosis for application in wastewater treatment: A review. Water Research, 58: 179-197.

26.   Cartinella, J. L., Cath, T. Y., Flynn, M. T., Miller, G. C., Hunter, K. W. and Childress, A. E. (2006). Removal of natural steroid hormones from wastewater using membrane contactor processes. Environmental Science and Technology, 40(23): 7381-7386.

27.   Lee, S., Boo, C., Elimelech, M. and Hong, S. (2010). Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 365(1-2): 34-39.

28.   Mi, B. and Elimelech, M. (2010). Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 348(1-2): 337-345.

29.   Adamczak, M., Kamińska, G. and Bohdziewicz, J. (2019). Preparation of polymer membranes by in situ interfacial polymerization. International Journal of Polymer Science, 2019: 6217924.

30.   Khorshidi, B., Thundat, T., Fleck, B. A. and Sadrzadeh, M. (2016). A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific Reports, 6(1): 1-10.

31.   Al-Hobaib, A. S., El Ghoul, J., Ghiloufi, I. and El Mir, L. (2016). Synthesis and characterization of polyamide thin-film nanocomposite membrane reached by aluminum doped ZnO nanoparticles. Materials Science in Semiconductor Processing, 42: 111-114.

32.   Mehwish, N., Kausar, A. and Siddiq, M. (2014). Advances in polymer-based nanostructured membranes for water treatment. Polymer - Plastics Technology and Engineering, 53(12): 1290-1316.

33.   Wei, J., Qiu, C., Tang, C. Y., Wang, R. and Fane, A. G. (2011). Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 372(1–2): 292–302.

34.   Syahida Mat Anan, N., Jaafar, J., Sato, S. and Mohamud, R. (2021). Titanium dioxide incorporated polyamide thin film composite photocatalytic membrane for bisphenol a removal. IOP Conference Series: Materials Science and Engineering, 1142(1): 012015.

35.   Miao, L., Jiang, T., Lin, S., Jin, T., Hu, J., Zhang, M. and Liu, G. (2020). Asymmetric forward osmosis membranes from p-aramid nanofibers. Materials & Design, 191: 108591.

36.   El-Arnaouty, M. B., Abdel Ghaffar, A. M., Eid, M., Aboulfotouh, M. E., Taher, N. H. and Soliman, E.-S. (2018). Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting. Journal of Radiation Research and Applied Sciences, 11(3): 204-216.

37.   Park, H. M., Takaba, H., & Lee, Y. T. (2020). Preparation and characterization of TFC NF membrane with improved acid resistance behavior. Journal of Membrane Science, 616: 118620.

38.   Song, X., Qi, S., Tang, C. Y. and Gao, C. (2017). Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. Journal of Membrane Science, 540: 10-18.

39.   Morgan, P. W. and Kwolek, S. L. (1996). Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. Journal of Polymer Science Part A: Polymer Chemistry, 40(137): 299-327.

40.   Rajaeian, B., Rahimpour, A., Tade, M. O. and Liu, S. (2013). Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination, 313: 176-188.

41.   McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S. and McGurgan, G. D. (2013). Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines. Desalination, 312: 67-74.

42.   Zhu, H. and Li, W. (2013). Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit. Frontiers of Environmental Science and Engineering, 7(2): 294-300.

43.   Hancock, N. T., Xu, P., Heil, D. M., Bellona, C. and Cath, T. Y. (2011). Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental Science and Technology, 45(19): 8483-8490.

44.   Valladares Linares, R., Yangali-Quintanilla, V., Li, Z. and Amy, G. (2011). Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research, 45(20): 6737-6744.