Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 492 - 506

 

 

 

 

SYNTHESIS OF GREEN-RENEWABLE BIOLUBRICANT BASE STOCK FROM MALAYSIAN PALM OIL

 

 (Sintesis Stok Asas Biopelincir Hijau-Diperbaharui daripada Minyak Sawit Malaysia)

 

Nurazira Mohd Nor1* and Jumat Salimon2

 

1MaterOleo Research Group,

Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia


*Corresponding author:  nurazira@uitm.edu.my

 

 

Received:  20 August 2021; Accepted:  3 February 2022; Published:  27 June 2022

 

 

Abstract

Palm oil has become one of the potential renewable resources in biolubricant application. However, the direct application of palm oil as a biolubricant is restricted due to its low oxidative stability and poor low temperature properties. These drawbacks can be overcome by molecule structural redesign through chemical modification process. Palm oil (PO) was modified via epoxidation, ring opening and esterification process. The epoxidized palm oil (EPO) was prepared by using an in-situ performic acid catalyst. Then, EPO was ring-opened using oleic acid in the presence of p-toluenesulfonic acid (PTSA) as a catalyst and further esterification with oleic acid using sulfuric acid as catalyst. The molecular structure confirmation of modified palm oils was proven through the oxirane oxygen content (OOC) value, iodin value, hydroxyl value, Fourier transformation infra-red (FTIR), proton and carbon nuclear magnetic resonance (1H-NMR and 13C-NMR) spectroscopy analysis. Results showed that the conversion of PO into EPO has improved its oxidative stability (190 °C). While, the esterification process has resulted in branching and bending in the molecule structure of the final product (palm oil dioleate, PODO), which improved its pour point (-10 °C), flash point (315 °C) and viscosity index (146). These make PODO suitable to be used in biolubricant application.

 

Keywords:  biolubricant, epoxidation, esterification, ring opening, palm oil

 

Abstrak

Minyak sawit merupakan salah satu sumber yang boleh diperbaharui yang berpotensi dalam penghasilan biopelincir. Walaubagaimanapun, penggunaan secara terus minyak sawit sebagai biopelincir adalah terhad disebabkan oleh kestabilan oksidatif yang rendah dan sifat suhu rendah yang lemah. Kelemahan ini boleh diatasi dengan ubahsuai struktur molekul melalui proses pengubahsuaian kimia. Minyak sawit (PO) diubahsuai melalui proses pengepoksidaan, pembukaan gelang dan pengesteran. Minyak sawit terepoksida (EPO) dihasilkan menggunakan mangkin asid performik yang dijana secara in-situ. Seterusnya, EPO ditindakbalaskan melalui pembukaan gelang menggunakan asid oleik dengan kehadiran p-toluena asid sulfonik (PTSA) sebagai mangkin dan diikuti dengan pengesteran dengan asid oleik dengan menggunakan mangkin asid sulfurik. Pengecaman struktur molekul minyak sawit terubahsuai dibuktikan melalui nilai kandungan oksigen oksiran, nilai iodin, nilai hidroksil, spektroskopi infra-merah transformasi Fourier (FTIR), proton dan karbon nuklear magnetik resonans (1H-NMR dan 13C-NMR). Keputusan menunjukkan penukaran PO kepada EPO telah memperbaiki nilai kestabilan oksidatifnya (190 °C). Manakala proses pengesteran telah menghasilkan struktur molekul yang bercabang dan bengkok bagi hasil akhir (dioleate minyak sawit, PODO) dan telah memperbaiki nilai takat tuang (-10 °C), takat kilat (315 °C) dan indeks kelikatan (146). Ini menjadikan PODO sesuai untuk digunakan dalam aplikasi biopelincir.

 

Kata kunci:  biopelincir, pengepoksidaan, pengesteran, pembukaan gelang, minyak sawit

 

 


Graphical Abstract

 

 

References

1.      Salimon, J. and Salih, N. (2009). Oleic acid diesters: Synthesis, characterization and low temperature properties. European Journal of Scientific Research, 32(2): 216-222.

2.      Farhoosh, R., Einafshar, S. and Sharayei, P. (2009). The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chemistry, 115: 933-938.

3.      Erhan, S. Z. and Asadauskas, S. (2000). Lubricant basestocks from vegetable oils. Industrial Crops and Products, 11: 277-282.

4.      Nirmal, V. P. and Dineshbabu, D. (2015). Performance and emission of Pongamia pinnata oil as a lubricant in diesel engine. International Journal of Innovative Research in Science, Engineering and Technology, 4(2): 75.

5.      Salih, N. and Salimon, J. (2021). A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Research in Applied Chemistry, 11(5): 13303-13327.

6.      Salimon, J., Salih, N. and Yousif, E. (2011). Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. Journal of Saudi Chemical Society, 15: 195-201.

7.      Wu, X., Zhang, X., Yang, S., Chen, H. and Wang, D. (2000). The study of epoxidized rapeseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemist Society, 77: 561-563.

8.      Salimon, J. and Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian Journal of Chemistry, 22(7): 5468-5476.

9.      Adhvaryu, A., Liu, Z. and Erhan, S. Z. (2005). Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties. Industrial Crops and Products, 21:113-119.

10.   Borugadda, V. B. and Goud, V. V. (2015). Response surface methodology for optimization of biolubricant basestock synthesis from high free fatty acids castor oil. Energy Science & Engineering, 3(4): 371-383.

11.   Erhan, S. Z., Sharma, B.K. and Perez, J. M. (2006). Oxidation and low temperature stability of vegetable oil-based lubricants. Industrial Crops and Products, 24: 292-299.

12.   Sharma, B. K., Perez, J. M. and Erhan, S. Z. (2007). Soybean oil-based lubricants: A search for synergistic antioxidants. Energy Fuels, 21: 2408-2414.

13.   Singh, C. P. and Chhibber, V. K. (2013). Chemical modification in karanja oil for biolubricant industrial applications. Journal Drug Delivery Therapeutics, 3:117-122.

14.   Borugadda, V. B. and Goud, V. V. (2013). Comparative studies of thermal, oxidative and low temperature properties of waste cooking oil and castor oil. Journal Renewable Sustainable Energy, 5: 063104.

15.   Salimon, J. and Salih, N. (2009). Substituted esters of octadecanoic acid as potential biolubricants. European Journal of Scientific Research, 31(2): 273 – 227.

16.   Moser, B. R. and Erhan, S. Z. (2007). Preparation and evaluation of a series of α-hydroxy ethers from 9, 10-epoxystreates. European Journal Lipid Science Technology, 109: 206-213.

17.   Salimon, J., Ahmed, W. A., Salih, N., Yarmo, M. A. and Derawi, D. (2015). Lubricity and tribological properties of dicarboxylic acids and oleyl alcohol based esters. Sains Malaysiana, 44(3): 405-412.

18.   Wang, R. and Schuman, T. P. (2013). Vegetable oil-derived epoxy monomers and polymer blends: A comparative study with review. eXPRESS Polymer Letters, 7(3):272–292.

19.   Meyer, P. P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. and Tongurai, C. (2008). Epoxidation of soybean oil and jatropha oil. Thammasat International Journal Science Technology, 13: 1-5.

20.   Lathi, P. S. and Mattiasson, B. (2007). Green approach for the preparation of biodegradable lubricant base stock from epoxidised vegetable oil. Applied Catalysis B: Environmental, 69: 207-212.

21.   Joseph, R., Madhusoodhanan, K. N., Alex, R., Varghese, S., George, K. E. and Kuriakose, B. (2014). Studies on epoxidised rubber seed oil as secondary plasticiser/stabiliser for polyvinyl chloride. Plastics Rubber and Composites, 33(5): 217-222.

22.   Derawi, D. and Salimon, J. (2016). Sintesis sebatian hidroksi-eter minyak sawit olein. Sains Malaysiana, 45(5): 817-823.

23.   Yunus, R., Razi, A. F., Iyuke T. L. and Idris, A. (2003). Preparation and characterization of trimethylolpropane esters from palm kernel oil methyl esters. Journal of Oil Palm Research, 15(2):42-49.

24.   Sharma, B. K., Doll, K. M. and Erhan, S. Z. (2008). Ester hydroxy derivatives of methyl oleate: tribological, oxidation and low temperature properties. Bioresource Technology, 99: 7333-7340.

25.   Salimon, J., Abdullah, B. M., Yusop, R. M., Salih, N. and Yousif, E. (2013). Synthesis and optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic acid. SpringerPlus, 2: 429.

26.   Nor, M. N., Derawi, D. and Salimon, J. (2017). Chemical modification of epoxidized palm oil for biolubricant application. Malaysian Journal of Analytical Sciences, 21(6):1423-1431.

27.   Nor, M. N., Derawi, D. and Salimon, J. (2018). The optimization of RBD palm oil epoxidation process using D-optimal design. Sains Malaysiana, 47(7):1359-1367.

28.   Njoku, P. C., Egbukole, M. O. and Enenebeaku, C. K. (2010). Physio-chemical characteristics and dietary metal levels of oil from Elaeis guineensis species. Pakistan Journal of Nutrition, 9(2):137-140.

29.   Nor, M. N., Salih, N. and Salimon, J. (2021). Optimization of the ring opening of epoxidized palm oil using D-optimal design. Asian Journal of Chemistry, 33(1):67-75.

30.   Kuntom, A., Lin, S. W., Ai, T. Y., Idris, N. A., Yusof, M., Sue, T. T. and Ibrahim, N. A. (2004). MPOB test methods: A compendium of test on palm oil products, palm kernel products, fatty acids, food related products and others. MPOB, Bangi.

31.   A.O.C.S. (1998). Official Methods and Recommended Practices of AOCS, AOCS, Illionis.

32.   Nadkarni, R. A. (2007). Guide to ASTM test methods for the analysis of petroleum products and lubricants. ASTM International, West Conshohocken.

33.   Mungroo, R., Pradhan, N. C, Goud, V. V. and Dalai, A. K. (2008). Epoxidation of canola oil with hydrogen peroxide catalyzed by acidic ion exchange resin. Journal of the American Oil Chemist Society, 85:887-896.

34.   Goud, V.V., Patwardhan, A.V. and Pradhan, N. C. (2006). Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresource Technology, 97:1365-1371.

35.   Goud, V.V., Patwardhan, A.V., Dinda, S. and Pradhan, N. C. (2007) Kinetics of epoxidation of Jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange resin. Chemical Engineering Science, 62: 4065-4076.

36.   Baumann, H., Buehler, M., Fochem, H., Hirsinger, F., Zoebelein, H. and Falbe, J. (1988). Natural fats and oils – renewable raw materials for the chemical industry. Angewandte Chemie, 27(1): 41-62.

37.   Hwang, H. S. and Erhan, S. Z. (2001). Modification of epoxidized soybean oil for lubricant formulation with improved oxidative stability and low pour point. Journal of the American Oil Chemist Society, 78(12): 1179-1184.

38.   Salimon, J., Abdullah, B. M., Yusop, R. M., Salih, N. and Yousif, E. (2013). Synthesis and optimization ring opening of monoepoxide linoleic acid using p-toluenesulfonic acid. SpringerPlus, 2: 429.

39.   Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2009). Introduction of spectroscopy, Fourth edition. Cengage Learning, United States: pp. 51-52.

40.   Sharma, A., Adhvaryu, A., Liu, Z. and Erhan, S. Z. (2006). Chemical modification of vegetable oils for lubricant applications. Journal of the American Oil Chemist Society, 83:129-136.

41.    Denicol Motor Oils N.V (2020). Denicol compressor oil. Access from https://pdf4pro.com/view/compressor-oil-iso-vg-32-46-68-100-150-denicol-5786bc.html. [Access online 25 December 2020].

42.   SubsTech: Substances and Technologies (2012). SubsTech hydraulic oil.    Access from http://www.substech. com /dokuwiki/doku.php? id=hydraulic_oil_iso_100 .[Access online 25 December 2020].