Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 478 - 491
IMPROVING THE MORPHOLOGICAL, THERMAL, AND ACOUSTICS PROPERTIES OF
POLYURETHANE-UREA BIOFOAM USING INDUSTRIAL PLYWOOD SAWDUST WASTE
(Meningkatkan Morfologi, Termal dan Sifat Akustik Busa
Poliuretan-Urea Menggunakan Sisa Habuk Papan Kayu Lapis)
Herlina Nofitasari1*,
Ari Handono Ramelan2, Mohammad Masykuri3
1Master’s Degree Program in Environmental Science
2Faculty
of Mathematics and Natural Sciences
3Faculty
of Teacher Training and Education
Universitas Sebelas Maret, Surakarta 57126, Indonesia
*Corresponding author: henosa25@gmail.com
Received: 29 December 2021; Accepted: 27 February 2022; Published: 27 June 2022
Abstract
Majority of the polyurethane–urea
(PUU) foam
is made from petroleum raw materials. Concerns regarding the loss of petroleum
resources promote the environmentally sustainable manufacture of foam. The
production of PUU foam synthesis from natural materials and waste composites
was then developed. The PUU/industrial plywood sawdust waste (IPSW) biofoam was
synthesized from a mixture of polyethylene glycol (PEG), methylene diisocyanate
(MDI), ethylenediamine (EDA), maleic anhydrate (MAH), and IPSW by using a
one-shot method. 5% IPSW was applied to the composition of the synthesized
biofoam and the MDI ratio was increased. Fourier Transform Infrared
Spectroscopy (FTIR) was used to identify functional groups of biofoam. The pore morphology of the
biofoam was observed with Microscope Camera and Scanning Electron Microscopy (SEM),
the thermal ability was measured with Thermogravimetric Analysis (TGA), and the
sound absorption ability was measured by using a two-microphone impedance tube
according to the ASTM E-1050 standard. Based on FTIR spectra identification, the
biofoam contains OH, CH, CO, and NH chemical groups. The results reveal that the
PUU/IPSW biofoam had intermediate macropore morphology (closed and open cells),
thermal resistance above 120oC, and potential materials as
sound-absorbing. The improvement in the biofoam properties upon the addition of
organic filler shows that the biofoam is promotable as renewable material. This
study suggests better formulation design to enhance the biofoam property
performance.
Keywords: acoustics, polyurethane-urea foam,
sawdust, scanning electron microscopy, thermogravimetric analysis
Abstrak
Kebanyakan
busa poliuretan-urea (PUU) diperbuat
daripada bahan mentah petroleum. Kebimbangan mengenai kehilangan sumber
petroleum menggalakkan pembuatan busa yang mampan secara alam sekitar.
Penghasilan sintesis busa PUU daripada bahan alam dan komposit sisa telah dibangunkan. Busa PUU
telah disintesis daripada campuran polietilen glikol (PEG), metilen diisosianat (MDI), etilen diamin (EDA), maleat anhidrat (MAH), dan sisa habuk papan industri kayu lapis (IPSW) dengan menggunakan
kaedah satu pukulan. Lima peratus IPSW telah digunakan pada komposisi biofoam
tersintesis dan nisbah MDI telah meningkat. Spektroskopi Infra-Merah
Transformasi Fourier (FTIR)
digunakan untuk mengenal pasti struktur biofoam. Morfologi liang biofoam
diperhatikan menggunakan mikroskop kamera dan SEM, TGA untuk pengukuran haba,
dan keupayaan biofoam untuk menyerap bunyi diukur menggunakan tabung impedansi
dua mikrofon mengikuti standar ASTM E-1050. Berdasarkan pengenalpastian spektrum
FTIR, biofoam mengandungi kumpulan kimia OH, CH, CO, dan NH. Keputusan
menunjukkan bahawa biofoam PUU/IPSW mempunyai morfologi makropori perantaraan
(sel tertutup dan sel terbuka), rintangan haba melebihi 120 oC, dan
berpotensi menjadi bahan penyerapan bunyi. Kemajuan kinerja ketika ditambahkan
pengisi organik menunjukkan bahawa ini dapat dipromosikan sebagai bahan
terbarukan. Studi ini menyarankan agar membuat formulasi yang lebih baik untuk
meningkatkan prestasinya.
Kata kunci: akustik, busa
poliuretan-urea, habuk papan, mikroskopi imbasan elektron, analisis termogravimetrik
Graphical Abstract
References
1.
Aditya, V. T., Masykuri,
M. and Setyono, P. (2019).
Analysis of noise in the green open space Putri Kaca Mayang, Pekanbaru City. AIP Conference Proceedings: International Conference on Biology and
Applied Science (ICOBAS), 2019.040020.
2.
Cao, L., Fu, Q., Si, Y.,
Ding, B. and Yu, J. (2018).
Porous material for sound absorption. Composites
Communications, 10(2018):
25-35.
3.
Rojo-Gomez,
R., Alameda,
L., Rodriguez,
A., Calderon,
V. and Guiterrez-Gonzalez, S. (2019). Characterization of polyuretane foam waste for reuse in
eco-efficient building materials. Polymers,
11:
359.
4.
Gama, N.V., Ferreira, A.
and Timmons, A. B. (2018). Polyurethane foams: Past, present and future. Materials, 11(10) : 1-35.
5.
Akindoyo, J. O., Beg, M.
D. H., Ghazali, S., Islam, M. R., Jeyaratman, N. and Yufaraj, A. R. (2016). Polyurethane types, synthesis and
applications- a review. Royal Society of
Chemistry, 6(1) :
114453-114482.
6.
Alis,
A., Majid, R. A., and Mohammad, Z. (2019).
Morphologies and thermal properties of palm-oil based
rigid polyurethane/halloysite nanocomposite foam. Chemical Engineering Transactions,
72(2019): 415-420.
7.
Bundjali, B., Masykuri,
M., Hartanti, F. W. and Arcana, I. M. (2018).
Poly (urethane-urea) synthesized from 9-ethoxy-1, 10-octadecanediol obtained by
modification of palm oil oleic acid. Journal
of Mathematics and Fundamental Sciences, 50(1): 13-27.
8.
Czlonka, S., Strakowska,
A., Strzelec, K., Kairyte, A., and Kremensas, A. (2020).
Bio-based polyurethane composite foams improved mechanical, termal, and
antibacterial properties. Materials,
13(1):1-20.
9.
Chen,
X., Xi, X., Pizzi, A., Fredon, E., Zhou, X., Li, J., Gerardin, C. and Du, G. (2020).
Preparation and characterization of condensed tannin
non-isocynate polyurethane (NIPU) rigid foams by ambient temperature blowing. Polymers, 12(4):1-20.
10.
Azahari, M. S. M., Rus,
A. Z. M., Kormin, S. and Zaliran, M. T. (2017).
Acoustic properties of polymer foam composites blended with different
percentage loadings of natural fiber. IOP
Conferences Series: Materials Science and Engineering, 244(2017):1-6.
11.
Azahari, M. S. M., Rus,
A. Z. M., Kormin, S. and Zaliran, M. T. (2018).
An acoustic study of Shorea leprosula wood fiber filled polyurethane
composite foam. Malaysian Journal of
Analytical Science, 22(6): 1031-1039.
12.
Nofitasari, H., Masykuri,
M. and Ramelan, A. H. (2020).
Reducing room noise using polyurethane-urea biofoam/industrial plywood sawdust
waste (PUU/IPSW). AIP Conferences
Proceedings: International Conference on Science and Applied Science,
2296(2020): 020061-020066.
13.
Czlonka,
S., Strakowska, A., Strzelec, K., Kairyte, A., and Vaitkus, S. (2019). Composites of rigid polyurethane foams and silica
powder filler enhanced with ionic liquid. Polymer Testing, 75(2019) : 12-25.
14.
Mustafov,
S. D., Sen, F. and Seydibeyoglu,
M. O. (2020). Preparation and
characterization of diatomite and hidroxyapatite reinforced porous polyurethane
foam biocomposites. Scientific Reports,
1(2020): 1-9.
15.
Rus, A. Z. M. and
Shafizah, S. (2015).
Acoustic behavior of polymer foam composite of Shorea leprosula
after UV-irradiation exposure International Journal Mechanical Aerospace,
Industry Mechatronics, 9(2015) :188-192.
16.
Sung, G., Kim, S. K.,
Kim, J. W. and Kim, J. H. (2016). Effect of isocyanate molecular structures in
fabricating flexible polyurethane foams on sound absorption behavior, Polymer Test, 53(2016): 156-164.
17.
Zhao, C., Wang, P., Wang,
L. and Liu, D. (2014). Reducing railway noise with porous sound-absorbing
concrete slabs. Advance Material Science Engineering, 2014: 1-11.
18.
Kayalvizhi,
M., Vakees, E., Suresh, J. and Arun, A. (2019). Poly(urethane-urea) based on functionalized polystyrene
with HMDI: Synthesis and characterization. Arabian
Journal of Chemistry, 12(8) : 2484-2491.
19.
Jiang, L., Ren, Z., Zhao,
W., Liu, W., Liu, H. and Zhu, C. (2018). Synthesis and structure/properties
characterizations of four polyurethane model hard segments. The Royal Society Open Science, 5(7): 1-11.
20.
Tiuc, A. E.,
Vasile, O., Usca, A-D., Gabor,
T. and Vermesan, H. (2014). The analysis of factors that influnce the sound
absorption coefficient in porous materials. Romanian
Journal of Acoustics and Vibration, 11 (2):105-108.
21.
Zhao,
X., Qi, Y., Li, K. and Zhang, Z. (2019). Hydrogen bonds and FTIR peaks of polyether polyurethane-urea. Key Engineering Materials, 815(2019):151-156.
22.
Bayu, A., Nandiyanto, D., Oktiani, R. dan Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic
material. Indonesian Journal of Science
and Technology, 4(1): 97-118.
23.
Ng,
H. M.,
Omar, F. S., Saidi, N. M. and Kasi, R. (2018). Encyclopedia of
Polymers Science and Technology. Jhon Waley Sons Inc, New
York: pp. 1-29.
24.
Kripluks, M., Cabulis, U., Ivdre, A., Kuranska,
M., Zileniewska, M. and Auguscik, M. (2016). Mechanical and thermal
properties of high-density rigid polyurethane foams from renewable resources. Journal Renewable Material, 4(1):
86-100.
25.
Huang,
X.Y., Hoop, C. F., Peng, X. P., Xie, J. L., Qi, J. Q., Jiang, Y. Z., Xiao, H. and Nie, S. X. (2018). Thermal stability analysis of polyurethane foams made
from microwave liquefaction bio-polyols with and without solid residue. BioResources, 13(2):
3346-3361.
26.
Amares,
S., Sujatmika, E., Hong, T. W., Durairaj, R. and Hamid, H. S. H. B. (2017).
A review: characteristic of noise absorption material. IOP Conferences Series: Journal of
Physics: Conferences Series,
908(2017): 012005.
27.
Hassan, N. N. M. and Rus,
A. Z. M. (2016). Influences of thickness and fabric for sound
absorption of
biopolymer composite. Applied Mechanics and Materials, 393(1): 102-107.