Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 478 - 491

 

 

 

 

 

IMPROVING THE MORPHOLOGICAL, THERMAL, AND ACOUSTICS PROPERTIES OF POLYURETHANE-UREA BIOFOAM USING INDUSTRIAL PLYWOOD SAWDUST WASTE

 

(Meningkatkan Morfologi, Termal dan Sifat Akustik Busa Poliuretan-Urea Menggunakan Sisa Habuk Papan Kayu Lapis)

 

Herlina Nofitasari1*, Ari Handono Ramelan2, Mohammad Masykuri3   

 

1Master’s Degree Program in Environmental Science

2Faculty of Mathematics and Natural Sciences

3Faculty of Teacher Training and Education

Universitas Sebelas Maret, Surakarta 57126, Indonesia

 

*Corresponding author:  henosa25@gmail.com

 

 

Received:  29 December 2021; Accepted:  27 February 2022; Published:  27 June 2022

 

 

Abstract

Majority of the polyurethane–urea (PUU) foam is made from petroleum raw materials. Concerns regarding the loss of petroleum resources promote the environmentally sustainable manufacture of foam. The production of PUU foam synthesis from natural materials and waste composites was then developed. The PUU/industrial plywood sawdust waste (IPSW) biofoam was synthesized from a mixture of polyethylene glycol (PEG), methylene diisocyanate (MDI), ethylenediamine (EDA), maleic anhydrate (MAH), and IPSW by using a one-shot method. 5% IPSW was applied to the composition of the synthesized biofoam and the MDI ratio was increased. Fourier Transform Infrared Spectroscopy (FTIR) was used to identify functional groups of biofoam. The pore morphology of the biofoam was observed with Microscope Camera and Scanning Electron Microscopy (SEM), the thermal ability was measured with Thermogravimetric Analysis (TGA), and the sound absorption ability was measured by using a two-microphone impedance tube according to the ASTM E-1050 standard. Based on FTIR spectra identification, the biofoam contains OH, CH, CO, and NH chemical groups. The results reveal that the PUU/IPSW biofoam had intermediate macropore morphology (closed and open cells), thermal resistance above 120oC, and potential materials as sound-absorbing. The improvement in the biofoam properties upon the addition of organic filler shows that the biofoam is promotable as renewable material. This study suggests better formulation design to enhance the biofoam property performance.

 

Keywords:  acoustics, polyurethane-urea foam, sawdust, scanning electron microscopy, thermogravimetric analysis

 

Abstrak

Kebanyakan busa poliuretan-urea (PUU) diperbuat daripada bahan mentah petroleum. Kebimbangan mengenai kehilangan sumber petroleum menggalakkan pembuatan busa yang mampan secara alam sekitar. Penghasilan sintesis busa PUU daripada bahan alam  dan komposit sisa telah dibangunkan. Busa PUU telah disintesis daripada campuran polietilen glikol (PEG), metilen diisosianat (MDI),  etilen diamin (EDA),  maleat anhidrat (MAH), dan sisa habuk papan industri kayu lapis (IPSW) dengan menggunakan kaedah satu pukulan. Lima peratus IPSW telah digunakan pada komposisi biofoam tersintesis dan nisbah MDI telah meningkat. Spektroskopi Infra-Merah Transformasi Fourier (FTIR) digunakan untuk mengenal pasti struktur biofoam. Morfologi liang biofoam diperhatikan menggunakan mikroskop kamera dan SEM, TGA untuk pengukuran haba, dan keupayaan biofoam untuk menyerap bunyi diukur menggunakan tabung impedansi dua mikrofon mengikuti standar ASTM E-1050. Berdasarkan pengenalpastian spektrum FTIR, biofoam mengandungi kumpulan kimia OH, CH, CO, dan NH. Keputusan menunjukkan bahawa biofoam PUU/IPSW mempunyai morfologi makropori perantaraan (sel tertutup dan sel terbuka), rintangan haba melebihi 120 oC, dan berpotensi menjadi bahan penyerapan bunyi. Kemajuan kinerja ketika ditambahkan pengisi organik menunjukkan bahawa ini dapat dipromosikan sebagai bahan terbarukan. Studi ini menyarankan agar membuat formulasi yang lebih baik untuk meningkatkan prestasinya.

 

Kata kunci:  akustik, busa poliuretan-urea, habuk papan, mikroskopi imbasan elektron, analisis termogravimetrik

 


Graphical Abstract




References

1.      Aditya, V. T., Masykuri, M. and Setyono, P. (2019). Analysis of noise in the green open space Putri Kaca Mayang, Pekanbaru City.  AIP Conference Proceedings: International Conference on Biology and Applied Science (ICOBAS), 2019.040020.

2.      Cao, L., Fu, Q., Si, Y., Ding, B. and Yu, J. (2018). Porous material for sound absorption. Composites Communications, 10(2018): 25-35.

3.      Rojo-Gomez, R., Alameda, L., Rodriguez, A., Calderon, V. and Guiterrez-Gonzalez, S. (2019). Characterization of polyuretane foam waste for reuse in eco-efficient building materials. Polymers,  11: 359.

4.      Gama, N.V., Ferreira, A. and Timmons, A. B. (2018). Polyurethane foams: Past, present and future. Materials, 11(10) : 1-35.

5.      Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratman, N. and Yufaraj, A. R. (2016).  Polyurethane types, synthesis and applications- a review. Royal Society of Chemistry, 6(1) : 114453-114482.

6.      Alis, A., Majid, R. A., and Mohammad, Z. (2019). Morphologies and thermal properties of palm-oil based rigid polyurethane/halloysite nanocomposite foam. Chemical Engineering Transactions, 72(2019): 415-420.

7.      Bundjali, B., Masykuri, M., Hartanti, F. W. and Arcana, I. M. (2018). Poly (urethane-urea) synthesized from 9-ethoxy-1, 10-octadecanediol obtained by modification of palm oil oleic acid. Journal of Mathematics and Fundamental Sciences, 50(1): 13-27.

8.      Czlonka, S., Strakowska, A., Strzelec, K., Kairyte, A., and Kremensas, A. (2020). Bio-based polyurethane composite foams improved mechanical, termal, and antibacterial properties. Materials, 13(1):1-20.

9.      Chen, X., Xi, X., Pizzi, A., Fredon, E., Zhou, X., Li, J., Gerardin, C. and Du, G. (2020). Preparation and characterization of condensed tannin non-isocynate polyurethane (NIPU) rigid foams by ambient temperature blowing. Polymers, 12(4):1-20.

10.   Azahari, M. S. M., Rus, A. Z. M., Kormin, S. and Zaliran, M. T. (2017). Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber. IOP Conferences Series: Materials Science and Engineering, 244(2017):1-6.

11.   Azahari, M. S. M., Rus, A. Z. M., Kormin, S. and Zaliran, M. T. (2018). An acoustic study of Shorea leprosula wood fiber filled polyurethane composite foam. Malaysian Journal of Analytical Science, 22(6): 1031-1039.

12.   Nofitasari, H., Masykuri, M. and Ramelan, A. H. (2020). Reducing room noise using polyurethane-urea biofoam/industrial plywood sawdust waste (PUU/IPSW). AIP Conferences Proceedings: International Conference on Science and Applied Science, 2296(2020): 020061-020066.

13.   Czlonka, S., Strakowska, A., Strzelec, K., Kairyte, A., and Vaitkus, S. (2019). Composites of rigid polyurethane foams and silica powder filler enhanced with ionic liquid. Polymer Testing, 75(2019) : 12-25.

14.   Mustafov, S. D., Sen, F. and Seydibeyoglu, M. O. (2020).  Preparation and characterization of diatomite and hidroxyapatite reinforced porous polyurethane foam biocomposites. Scientific Reports, 1(2020): 1-9.

15.   Rus, A. Z. M. and Shafizah, S. (2015). Acoustic behavior of polymer foam composite of Shorea leprosula after UV-irradiation exposure International Journal Mechanical Aerospace, Industry Mechatronics, 9(2015) :188-192.

16.   Sung, G., Kim, S. K., Kim, J. W. and Kim, J. H. (2016). Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior, Polymer Test, 53(2016): 156-164.

17.   Zhao, C., Wang, P., Wang, L. and Liu, D. (2014). Reducing railway noise with porous sound-absorbing concrete slabs. Advance Material Science Engineering, 2014: 1-11.

18.   Kayalvizhi, M., Vakees, E., Suresh, J. and Arun, A. (2019). Poly(urethane-urea) based on functionalized polystyrene with HMDI: Synthesis and characterization. Arabian Journal of Chemistry, 12(8) : 2484-2491.

19.   Jiang, L., Ren, Z., Zhao, W., Liu, W., Liu, H. and Zhu, C. (2018). Synthesis and structure/properties characterizations of four polyurethane model hard segments. The Royal Society Open Science, 5(7): 1-11.

20.   Tiuc, A. E.,  Vasile, O., Usca, A-D., Gabor, T. and Vermesan, H. (2014). The analysis of factors that influnce the sound absorption coefficient in porous materials. Romanian Journal of Acoustics and Vibration, 11 (2):105-108.

21.   Zhao, X., Qi, Y., Li, K. and Zhang, Z. (2019). Hydrogen bonds and FTIR peaks of polyether polyurethane-urea. Key Engineering Materials, 815(2019):151-156.

22.   Bayu, A., Nandiyanto, D., Oktiani, R. dan Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1): 97-118.

23.   Ng, H. M., Omar, F. S., Saidi, N. M. and Kasi, R. (2018). Encyclopedia of Polymers Science and Technology. Jhon Waley Sons Inc, New York: pp. 1-29.

24.   Kripluks, M., Cabulis, U., Ivdre, A., Kuranska, M., Zileniewska, M. and Auguscik, M. (2016). Mechanical and thermal properties of high-density rigid polyurethane foams from renewable resources. Journal Renewable Material, 4(1): 86-100.

25.   Huang, X.Y., Hoop, C. F., Peng, X. P., Xie, J. L., Qi, J. Q., Jiang, Y. Z., Xiao, H. and Nie, S. X. (2018). Thermal stability analysis of polyurethane foams made from microwave liquefaction bio-polyols with and without solid residue. BioResources, 13(2): 3346-3361.

26.   Amares, S., Sujatmika, E., Hong, T. W., Durairaj, R. and Hamid, H. S. H. B. (2017). A review: characteristic of noise absorption material. IOP Conferences Series: Journal of Physics: Conferences Series,  908(2017): 012005.

27.   Hassan, N. N. M. and Rus, A. Z. M. (2016).  Influences of thickness and fabric for sound absorption of biopolymer composite. Applied Mechanics and Materials, 393(1): 102-107.