Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 457 - 477

 

 

 

 

Quantitative structure-activity relationship (QSAR) study of newly synthesized carbonyl thiourea derivatives on Acanthamoeba sp.

 

(Kajian Kuantitatif Hubungan Struktur-Aktiviti (QSAR) Terhadap Terbitan Karbonil Tiourea Hasilan Sintesis Baru Terhadap Acanthamoeba sp.)

 

Maizatul Akma Ibrahim1*, Nor Hafizah Zakaria1, Mohd Sukeri Mohd Yusof2

 

1Department of Plant Science, Kulliyyah of Science,

International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia

2Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.

 

*Corresponding author:  maizatulakma@iium.edu.my

 

 

Received: 3 December 2021; Accepted: 23 March 2022; Published:  27 June 2022

 

 

Abstract

This research aims to build a mathematical quantitative structure-activity relationship (QSAR) model, which could relate the relationship between newly-synthesized carbonyl thiourea derivatives with their anti-amoebic activities. Therefore, in this study, inhibition concentration of 50% cells population (IC50) was evaluated for 44 carbonyl thiourea derivatives on pathogenic Acanthamoeba sp. (Hospital Kuala Lumpur isolate). QSAR analysis was conducted using the obtained IC50 data with additional 4 thiourea compounds of the same group from our previous work by applying three linear regression techniques namely stepwise-MLR, GA-MLR, and GA-PLS. Results showed that these thiourea derivatives are positively active against the tested Acanthamoeba sp. with IC50 values ranging from 2.56 to 7.81 µg/mL. From the evaluation of the obtained models, the GA-PLS technique is found to be the best model due to its best predictive ability. The final equation of GA-PLS model gave good statistical output with values of r2 = 0.827, r2cv = 0.682 RMSEC=0.047, RMSECV=0.064, and r2test =0.790 and RMSEP=0.051. Y-randomization test has confirmed that the model did not occur from the chance of correlation with r2 = 0.015-0.372. Small residual with values less than 0.25 from the prediction in the test set proves the robustness of the model. The information generated from this study will provide an insight into designing a new lead compound from carbonyl thiourea containing highly potential anti-amoebic properties.

 

Keywords:  thiourea derivatives, Acanthamoeba sp., IC50, anti-amoebic activity, QSAR models

 

Abstrak

Kajian ini mensasarkan pembinaan model matematik kuantitatif hubungan struktur-aktiviti (QSAR) yang memberi hubungkait antara terhadap terbitan karbonil tiourea hasilan sintesis baru dengan aktiviti anti-amebik. Oleh itu, kepekatan penghambatan 50% populasi sel (IC50) dikaji ke atas 44 sebatian karbonil tiourea terhadap Acanthamoeba sp. (Hospital Kuala Lumpur isolat) berstatus patogenik. Analisa hubungan struktur-aktiviti kuantitatif dijalankan menggunakan data IC50 yang diperolehi bersama 4 sebatian tambahan kumpulan sama dari hasil kerja kami sebelum ini, dengan mengaplikasi tiga teknik regresi linear, iaitu stepwise-MLR, GA-MLR dan GA-PLS dijalankan. Hasil kajian menunjukkan bahawa sebatian tiourea ini aktif secara positif terhadap Acanthamoeba sp.yang diuji dengan nilai IC50 antara 2.56 hingga 7.81 µg/mL. Penilaian terhadap semua model QSAR yang dibina dalam kajian ini menunjukkan teknik GA-PLS adalah model yang terbaik kerana kemampuan ramalannya yang terbaik. Persamaan akhir untuk model GA-PLS menunjukkan output statistik yang baik dengan nilai r2 = 0.827, r2cv = 0.682, RMSEC = 0.047, RMSECV = 0.064, r2test = 0.790 dan RMSEP = 0.051. Ujian perawakan-y mengesahkan bahawa model tersebut tidak terhasil secara kebetulan dengan r2 = 0.015-0.372. Baki kecil dengan nilai kurang dari 0.25 dari ramalan set ujian membuktikan kekuatan model tersebut. Data terbina dari kajian ini akan memberi maklumat untuk mencipta sebatian penting baru dari tiourea karbonil yang mempunyai aktiviti anti-amebik yang berpotensi tinggi.

 

Kata kunci:  tiourea terbitan, Acanthamoeba sp., IC50, aktiviti anti-amebik, model QSAR

 

 


Graphical Abstract

 

 

References

1.      Kang, H., Sohn, H. J Park, A. Y. et al. (2021). Establishment of an Acanthamoeba keratitis mouse model confirmed by amoebic DNA amplification. Scientific Report, 11: 4183.

2.      Vontobel, S. F, Abad-Villar, E. M., Kaufmann, C., Zinkernagel, A. S., Hauser, P. C. et al. (2015). Corneal Penetration of Polyhexamethylene Biguanide and Chlorhexidine Digluconate. Journal of Clinical and Experimental Ophthalmology, 6: 430.

3.      Turner, N. A., Russell, A. D., Furr, J. R. and Lloyd, D. (2000). Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. Journal of Antimicrobial Chemotherapy, 46: 27-34.

4.      Lorenzo-Morales, J., Khan, N. A. and Walochnik, J. (2015). An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 22: 10.

5.      Chen, S., Wu, G. and Zeng, H. (2005). Preparation of high antimicrobial activity chitosan-Ag+ complex. Carbohydrate Polymers, 60: 33-38.

6.      Alcolea, V., Plano, D., Karelia, D. N., Palop, J. A., Amin, S., Sanmartín, C. et al. (2016). Novel seleno- and thio-urea derivatives with potent in vitro activities against several cancer cell lines. European Journal of Medical Chemistry, 113: 134-144.

7.      Sadeghian-Rizi, S., Sakhteman, A. and Hassanzadeh, F. (2016). A quantitative structure-activity relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors. Research in Pharmaceutical Sciences, 11(6): 445-453.

8.      Naz, S., Zahoor, M., Umar, M., Alghamdi, S., Sahibzada, M. and UlBari, W. (2020). Synthesis, characterization, and pharmacological evaluation of thiourea derivatives. Open Chemistry, 18(1): 764-777.

9.      Keche, A. P. and Kamble, V. M. (2019). Synthesis and anti-inflammatory and antimicrobial activities of some novel 2-methylquinazolin-4(3H)-one derivatives bearing urea, thiourea and sulphonamide functionalities, Arabian Journal of Chemistry, 12(7): 1522-1531.

10.   Asadollahi-Baboli, M. and Dehnavi, S. (2018). Docking and QSAR analysis of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Computational Biology and Chemistry, 76: 283-292.

11.   Ibrahim, M. A., Yusof, M. S. and Amin, N. M. (2014). Anti-amoebic properties of carbonyl thiourea derivatives. Molecules, 19(4): 5191-5204.

12.   Wiji Prasetyaningrum, P., Bahtiar, A. and Hayun, H. (2018). Synthesis and cytotoxicity evaluation of novel asymmetrical mono-carbonyl analogs of Curcumin (AMACs) against Vero, HeLa, and MCF7 Cell Lines. Scientia Pharmaceutica, 86(2): 25.

13.   Xu, Q., Deng, H., Li, X. and Quan, Z. S. (2021). Application of amino acids in the structural modification of natural products: A review. Frontiers in Chemistry, 9: 650569.

14.   Hauck, M., Jürgens, S. R. and Leuschner, C. (2010). Effect of amino acid moieties on metal binding in pulvinic acid derivatives and ecological implications for lichens producing these compounds. The Bryologist, 113(1): 1-7.

15.   Ahmadi, S. and Habibpour, E. (2017). Application of GA-MLR for QSAR modeling of the arylthioindole class of tubulin polymerization inhibitors as anticancer agents. Anticancer Agents in Medical Chemistry, 17(4): 552-565.

16.   Rahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad, M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. et al. (2021). Thiourea derivatives, simple in structure but efficient enzyme inhibitors and mercury sensors. Molecules, 26: 4506.

17.   Patnaik, P. (2007). A comprehensive guide to the hazardous properties of chemical substances: Thiourea. Wiley-Interscience, Hoboken, New Jersey: pp. 904.

18.   Saxena, A. K. and Prathipati, P. (2003). Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environmental Research, 14(5-6): 433-445.

19.   Hadanu, R., Mastjeh, S., Mustofa, J., Sholikhah, E. N., Wijayanti, M. A. and Tahir, I. (2007). Quantitative structure-activity relationship analysis (QSAR) of antimalarial 1,10-phenanthroline derivatives compounds. Indonesian Journal of Chemistry, 7(1): 72-77.

20.   Frimayanti, N., Yam, M. L., Lee, H. B., Othman, R., Zain, S. M. and Rahman, N. A. (2011). Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction. International Journal of Molecular Sciences, 12(12), 8626–8644.

21.   Qin, L., Zhang, X., Chen, Y., Mo, L., Zeng, H. and Liang, Y. (2017). Predictive QSAR Models for the toxicity of disinfection byproducts. Molecules, 22(10): 1671.

22.   Ravichandran, V., Mourya, V. K. and Agrawal, R. K. (2009). Prediction of anti-HIV activity of phenyl ethyl thiourea (PET) derivatives: QSAR approach. Digest Journal of Nanomaterials and Biostructures, 4: 213-221.

23.   Tropsha, A., Gramatica, P. and Gombar, V. K. (2003). The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR and Combinatorial Science, 22: 69-77.

24.   Edraki, N., Das, U., Hemateenejad, B., Dimmock, J. R. and Miri, R. (2016). Comparative QSAR analysis of 3,5-bis (arylidene)-4-piperidone derivatives: The development of predictive cytotoxicity models. Iranian Journal of Pharmaceutical Research,15(2): 425-437.

25.   Katoch, S., Chauhan, S. S. and Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools Application, 80: 8091–8126.

26.   Filzmoser, P., Gschwandtner, M. and Todorov, V. (2012). Review of sparse methods in regression and classification with application to chemometrics. Journal of Chemometrics, 26: 42-51.

27.   Tran, T. N., Afanador, N. L., Buydens, L. M. C. and Blanchet, L. (2014). Interpretation of variable importance in partial least squares with significance multi-variate correlation (sMC). Chemometrics and Intelligent Laboratory System, 138: 153-160.

28.   Yuyama, M., Ito, T., Arai, Y., Kadowaki, Y., Iiyama, N. et al., (2020). Risk prediction method for anticholinergic action using auto-quantitative structure–activity relationship and docking study with molecular operating environment. Chemical and Pharmaceutical Bulletin, 68(8): 773-778.

29.   Sabet, R. and Fassihi, A. (2008). QSAR study of antimicrobial 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives using different chemometric tools. International Journal of Molecular Sciences, 9(12): 2407-2423.

30.   Deeb, O., Hemmateenejad, B, Jaber, A., Garduno-Juarez, R., Miri, R. (2007). Effects of the electronic and physicochemical parameters on the carcinogenecis activity of some sulfa drug using QSAR analysis based on genetic-MLR & genetic-PLS. Chemosphere, 67: 2122-2130.

31.   Speck-Planche, A., Kleandrova, V.V., Luan, M.F., and Cordeiro, N.D.S. (2011). Fragment-based QSAR model toward the selection of versatile anti-sarcoma leads. European Journal of Medicinal Chemistry, 46: 5910-5916.

32.   Viswanadhan, V. N., Reddy, M. R., Bacquet, R. J. and Erion, M. D. (1993). Assessment of methods used for predicting lipophilicity: application to nucleosides and nucleoside bases. Journal of Computational Chemistry, 14: 1019-1026.

33.   Horne, D. S. (1988). Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers, 27: 451-477.

34.   Helguera, A.M., Natália, M., Cordeiro, D.S., González, M.P., Pérez, M.A.C., Ruiz, R.M., and Castillo, Y.P. (2007). QSAR modeling for predicting carcinogenic potency of nitroso-compounds using 0D-2D molecular descriptors. 11th International Electronic Conference on Synthetic Organic Chemistry, 1-30 November 2007.

35.   Jain, H.K., and Agrawal, R.K. (2006). QSAR analysis of indomethacin derivatives as selective COX–2 inhibitors. Internet Electronic Journal of Molecular Design, 5: 224-236.

36.   Todeschini, R., and Consonni, V. 2000. Handbook of Molecular Descriptors: Methods and Principles in Medicinal Chemistry. Volume 11, pp. 11. Weinheim: Wiley-VCH.

37.   Raychaudhury, C., Banerjee, A., Bag, P., and Roy, S. (1999). Topological shape and size of peptides:  Identification of potential allele specific helper T cell antigenic sites. Journal of Chemical Information and Computer Sciences, 39(2): 248-254.

38.    Todeschini, R., Consonni, V., and Gramatica, P. (2009). Chemometrics in QSAR. In: Brown S, Tauler R, Walczak R. eds. Comprehensive Chemometrics: Chemical and biochemical analysis, pp. 129-172. Oxford: Elsevier.