Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 457 - 477
Quantitative structure-activity
relationship (QSAR) study of newly synthesized carbonyl
thiourea derivatives on Acanthamoeba sp.
(Kajian Kuantitatif
Hubungan Struktur-Aktiviti (QSAR) Terhadap Terbitan Karbonil Tiourea Hasilan
Sintesis Baru Terhadap Acanthamoeba
sp.)
Maizatul Akma Ibrahim1*, Nor Hafizah Zakaria1, Mohd
Sukeri Mohd Yusof2
1Department of Plant Science, Kulliyyah of
Science,
International Islamic University Malaysia, Bandar
Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
2Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia.
*Corresponding
author: maizatulakma@iium.edu.my
Received: 3 December 2021; Accepted: 23 March 2022;
Published: 27 June 2022
Abstract
This research aims to build a mathematical quantitative
structure-activity relationship (QSAR) model, which could relate the
relationship between newly-synthesized carbonyl thiourea derivatives with their
anti-amoebic activities. Therefore, in this study, inhibition concentration of
50% cells population (IC50) was evaluated for 44 carbonyl thiourea
derivatives on pathogenic Acanthamoeba sp.
(Hospital Kuala Lumpur isolate). QSAR analysis was conducted using the obtained
IC50 data with additional 4 thiourea compounds of the same group
from our previous work by applying three linear regression techniques namely stepwise-MLR,
GA-MLR, and GA-PLS. Results showed that these thiourea derivatives are
positively active against the tested Acanthamoeba
sp. with IC50 values ranging from 2.56 to 7.81 µg/mL. From the
evaluation of the obtained models, the GA-PLS technique is found to be the best
model due to its best predictive ability. The final equation of GA-PLS model
gave good statistical output with values of r2
= 0.827, r2cv =
0.682 RMSEC=0.047,
RMSECV=0.064, and r2test =0.790 and RMSEP=0.051. Y-randomization test has confirmed that the model did not
occur from the chance of correlation with r2
= 0.015-0.372. Small residual with values less than 0.25 from the prediction
in the test set proves the robustness of the model. The information generated
from this study will provide an insight into designing a new lead compound from
carbonyl thiourea containing highly potential anti-amoebic properties.
Keywords: thiourea
derivatives, Acanthamoeba sp., IC50, anti-amoebic
activity, QSAR models
Abstrak
Kajian
ini mensasarkan pembinaan model matematik kuantitatif hubungan
struktur-aktiviti (QSAR) yang memberi hubungkait antara terhadap terbitan
karbonil tiourea hasilan sintesis baru dengan aktiviti anti-amebik. Oleh itu,
kepekatan penghambatan 50% populasi sel (IC50) dikaji ke atas 44 sebatian
karbonil tiourea terhadap Acanthamoeba sp. (Hospital Kuala Lumpur isolat)
berstatus patogenik. Analisa hubungan struktur-aktiviti kuantitatif dijalankan menggunakan
data IC50 yang diperolehi bersama 4 sebatian tambahan kumpulan sama dari
hasil kerja kami sebelum ini, dengan mengaplikasi tiga teknik regresi linear,
iaitu stepwise-MLR, GA-MLR dan GA-PLS dijalankan. Hasil kajian menunjukkan
bahawa sebatian tiourea ini aktif secara positif terhadap Acanthamoeba sp.yang
diuji dengan nilai IC50 antara 2.56 hingga 7.81 µg/mL. Penilaian
terhadap semua model QSAR yang dibina dalam kajian ini menunjukkan teknik
GA-PLS adalah model yang terbaik kerana kemampuan ramalannya yang terbaik.
Persamaan akhir untuk model GA-PLS menunjukkan output statistik yang baik
dengan nilai r2 = 0.827, r2cv = 0.682, RMSEC = 0.047, RMSECV = 0.064, r2test
= 0.790 dan RMSEP = 0.051. Ujian
perawakan-y mengesahkan bahawa model tersebut tidak terhasil secara kebetulan
dengan r2 = 0.015-0.372.
Baki kecil dengan nilai kurang dari 0.25 dari ramalan set ujian membuktikan
kekuatan model tersebut. Data terbina dari kajian ini akan memberi maklumat
untuk mencipta sebatian penting baru dari tiourea karbonil yang mempunyai
aktiviti anti-amebik yang berpotensi tinggi.
Kata kunci: tiourea terbitan, Acanthamoeba sp., IC50, aktiviti anti-amebik, model QSAR
Graphical Abstract
References
1.
Kang, H., Sohn, H. J
Park, A. Y. et al. (2021).
Establishment of an Acanthamoeba keratitis mouse model confirmed by
amoebic DNA amplification. Scientific Report, 11: 4183.
2.
Vontobel, S.
F, Abad-Villar, E. M., Kaufmann, C., Zinkernagel, A. S., Hauser, P. C. et al.
(2015). Corneal Penetration of Polyhexamethylene Biguanide and Chlorhexidine
Digluconate. Journal of Clinical and
Experimental Ophthalmology, 6: 430.
3.
Turner, N. A.,
Russell, A. D., Furr, J. R. and Lloyd, D. (2000). Emergence of resistance to
biocides during differentiation of Acanthamoeba castellanii. Journal of Antimicrobial Chemotherapy,
46: 27-34.
4.
Lorenzo-Morales, J.,
Khan, N. A. and Walochnik, J. (2015). An update on Acanthamoeba keratitis:
diagnosis, pathogenesis and treatment. Parasite, 22: 10.
5.
Chen, S., Wu,
G. and Zeng, H. (2005). Preparation of high antimicrobial activity chitosan-Ag+ complex. Carbohydrate Polymers, 60: 33-38.
6.
Alcolea,
V., Plano, D., Karelia, D. N., Palop, J. A., Amin, S., Sanmartín, C. et al. (2016). Novel seleno- and
thio-urea derivatives with potent in vitro activities against several cancer
cell lines. European Journal of Medical
Chemistry, 113: 134-144.
7.
Sadeghian-Rizi, S.,
Sakhteman, A. and Hassanzadeh, F. (2016). A quantitative structure-activity
relationship (QSAR) study of some diaryl urea derivatives of B-RAF inhibitors. Research
in Pharmaceutical Sciences, 11(6):
445-453.
8.
Naz, S., Zahoor, M., Umar,
M., Alghamdi, S., Sahibzada, M. and UlBari, W. (2020). Synthesis,
characterization, and pharmacological evaluation of thiourea derivatives. Open
Chemistry, 18(1): 764-777.
9.
Keche, A. P. and
Kamble, V. M. (2019). Synthesis and anti-inflammatory and antimicrobial
activities of some novel 2-methylquinazolin-4(3H)-one derivatives bearing urea,
thiourea and sulphonamide functionalities, Arabian
Journal of Chemistry, 12(7): 1522-1531.
10.
Asadollahi-Baboli, M. and
Dehnavi, S. (2018). Docking and QSAR analysis of tetracyclic oxindole
derivatives as α-glucosidase inhibitors. Computational Biology and Chemistry, 76: 283-292.
11.
Ibrahim, M. A., Yusof, M.
S. and Amin, N. M. (2014). Anti-amoebic properties of carbonyl thiourea
derivatives. Molecules, 19(4):
5191-5204.
12.
Wiji Prasetyaningrum, P.,
Bahtiar, A. and Hayun, H. (2018). Synthesis and cytotoxicity evaluation of
novel asymmetrical mono-carbonyl analogs of Curcumin (AMACs) against Vero, HeLa,
and MCF7 Cell Lines. Scientia
Pharmaceutica, 86(2): 25.
13.
Xu, Q., Deng, H., Li, X.
and Quan, Z. S. (2021). Application of amino acids in the structural
modification of natural products: A review. Frontiers in Chemistry, 9: 650569.
14.
Hauck, M., Jürgens, S. R.
and Leuschner, C. (2010). Effect of amino acid moieties on metal binding in pulvinic
acid derivatives and ecological implications for lichens producing these
compounds. The Bryologist, 113(1): 1-7.
15.
Ahmadi, S. and Habibpour,
E. (2017). Application of GA-MLR for QSAR modeling of the arylthioindole class
of tubulin polymerization inhibitors as anticancer agents. Anticancer Agents in Medical Chemistry, 17(4): 552-565.
16.
Rahman, F. U., Bibi, M., Khan, E., Shah, A. B., Muhammad,
M., Tahir, M. N., Shahzad, A., Ullah, F., Zahoor, M., Alamery, S. et al. (2021).
Thiourea derivatives, simple in structure but efficient enzyme inhibitors and
mercury sensors. Molecules, 26:
4506.
17.
Patnaik, P.
(2007). A comprehensive guide to the hazardous properties of chemical
substances: Thiourea. Wiley-Interscience, Hoboken, New Jersey: pp. 904.
18.
Saxena, A. K.
and Prathipati, P. (2003). Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environmental Research,
14(5-6): 433-445.
19.
Hadanu, R.,
Mastjeh, S., Mustofa, J., Sholikhah, E. N., Wijayanti, M. A. and Tahir, I.
(2007). Quantitative structure-activity relationship analysis (QSAR) of
antimalarial 1,10-phenanthroline derivatives compounds. Indonesian Journal of Chemistry, 7(1): 72-77.
20.
Frimayanti, N., Yam, M.
L., Lee, H. B., Othman, R., Zain, S. M. and Rahman, N. A. (2011). Validation of
quantitative structure-activity relationship (QSAR) model for photosensitizer
activity prediction. International Journal of Molecular Sciences, 12(12), 8626–8644.
21.
Qin, L., Zhang, X., Chen,
Y., Mo, L., Zeng, H. and Liang, Y. (2017). Predictive QSAR Models for the
toxicity of disinfection byproducts. Molecules, 22(10): 1671.
22.
Ravichandran,
V., Mourya, V. K. and Agrawal, R. K. (2009). Prediction of anti-HIV activity of
phenyl ethyl thiourea (PET) derivatives: QSAR approach. Digest Journal of Nanomaterials and Biostructures, 4: 213-221.
23.
Tropsha, A.,
Gramatica, P. and Gombar, V. K. (2003). The importance of being earnest:
validation is the absolute essential for successful application and interpretation
of QSPR Models. QSAR and Combinatorial
Science, 22: 69-77.
24.
Edraki, N., Das, U., Hemateenejad, B., Dimmock, J. R. and Miri,
R. (2016). Comparative QSAR analysis of
3,5-bis (arylidene)-4-piperidone derivatives: The development of predictive
cytotoxicity models. Iranian Journal
of Pharmaceutical Research,15(2): 425-437.
25.
Katoch, S., Chauhan, S.
S. and Kumar, V. (2021). A review on genetic algorithm: past, present, and
future. Multimedia Tools Application, 80: 8091–8126.
26.
Filzmoser, P., Gschwandtner, M. and Todorov, V. (2012).
Review of sparse methods in regression and classification with application to
chemometrics. Journal of Chemometrics,
26: 42-51.
27.
Tran, T. N., Afanador, N. L., Buydens, L. M. C. and
Blanchet, L. (2014). Interpretation of variable importance in partial least
squares with significance multi-variate correlation (sMC). Chemometrics and Intelligent Laboratory System, 138: 153-160.
28.
Yuyama, M., Ito,
T., Arai, Y., Kadowaki, Y., Iiyama, N. et al., (2020). Risk
prediction method for anticholinergic action using auto-quantitative
structure–activity relationship and docking study with molecular operating
environment. Chemical and
Pharmaceutical Bulletin, 68(8): 773-778.
29.
Sabet, R. and Fassihi, A.
(2008). QSAR study of antimicrobial 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one
derivatives using different chemometric tools. International Journal of
Molecular Sciences, 9(12): 2407-2423.
30.
Deeb,
O., Hemmateenejad, B, Jaber, A., Garduno-Juarez, R., Miri, R. (2007). Effects
of the electronic and physicochemical parameters on the carcinogenecis activity
of some sulfa drug using QSAR analysis based on genetic-MLR & genetic-PLS. Chemosphere, 67:
2122-2130.
31.
Speck-Planche,
A., Kleandrova, V.V., Luan, M.F., and Cordeiro, N.D.S. (2011). Fragment-based
QSAR model toward the selection of versatile anti-sarcoma leads. European Journal of Medicinal Chemistry,
46: 5910-5916.
32.
Viswanadhan,
V. N., Reddy, M. R., Bacquet, R. J. and Erion, M. D. (1993). Assessment of
methods used for predicting lipophilicity: application to nucleosides and nucleoside
bases. Journal of Computational
Chemistry, 14: 1019-1026.
33.
Horne, D. S. (1988).
Prediction of protein helix content from an autocorrelation analysis of
sequence hydrophobicities. Biopolymers,
27: 451-477.
34.
Helguera,
A.M., Natália, M., Cordeiro, D.S., González, M.P., Pérez, M.A.C., Ruiz, R.M.,
and Castillo, Y.P. (2007). QSAR modeling for predicting carcinogenic potency of
nitroso-compounds using 0D-2D molecular descriptors. 11th International Electronic Conference on Synthetic
Organic Chemistry, 1-30 November 2007.
35.
Jain, H.K.,
and Agrawal, R.K. (2006). QSAR analysis of indomethacin derivatives as
selective COX–2 inhibitors. Internet
Electronic Journal of Molecular Design, 5: 224-236.
36.
Todeschini,
R., and Consonni, V. 2000. Handbook of Molecular Descriptors: Methods and
Principles in Medicinal Chemistry. Volume 11, pp. 11. Weinheim: Wiley-VCH.
37.
Raychaudhury,
C., Banerjee, A., Bag, P., and Roy, S. (1999). Topological shape and size of peptides:
Identification of potential allele specific helper T cell antigenic sites. Journal of Chemical Information and Computer
Sciences, 39(2): 248-254.
38.
Todeschini,
R., Consonni, V., and Gramatica, P. (2009). Chemometrics in QSAR. In: Brown S,
Tauler R, Walczak R. eds. Comprehensive Chemometrics: Chemical and biochemical
analysis, pp. 129-172. Oxford: Elsevier.