Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 652 - 663

 

 

 

 

CHEMICAL OXYGEN DEMAND AND TURBIDITY REMOVAL OF LANDFILL LEACHATE USING ELECTROCOAGULATION TECHNIQUE WITH Al ELECTRODE

 

(Penyingkiran Permintaan Oksigen Kimia dan Kekeruhan daripada Larut Resap Tapak Pelupusan dengan Menggunakan Elektrod Al)

 

Norilhamiah Yahya1*, M. Firdaus Mamat1, Suhaini Mamat1, Nabila A. Karim2

 

1Malaysian Institute of Chemical and Bioengineering Technology,

Universiti Kuala Lumpur, 78000 Alor Gajah, Malacca, Malaysia

2Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia

 

*Corresponding author:  norilhamiah@unikl.edu.my

 

 

Received: 2 December 2021; Accepted: 6 March 2022; Published:  27 June 2022

 

 

Abstract

The electrocoagulation process is classified as green technology to treat landfill leachates. A 16 full factorial experimental design evaluated and optimized the electrocoagulation method and compromised efficiency and operational costs. This study assessed three factors: operation time, voltage, and electrode size, to determine the most influencing parameters and describe the interaction between chemical oxygen demand (COD) and turbidity removal. Statistical analysis results using a half-normal plot demonstrated that all main factors significantly affected the removal efficiency of COD and turbidity. The Pareto chart reveals that the order of significance for COD and turbidity removal efficiency was voltage > operation time > electrode size> interaction between voltage and electrode. The best regression coefficients (R2) were obtained for COD and turbidity, which reached 0.9597 and 0.9908, respectively, confirming that the predicted values complied with the experimental values. This implied the appropriateness of the employed regression model. The optimization process results showed that for maximizing the removal efficiency of COD and turbidity, the optimal level of operation time was 30 min, voltage 30 V and electrode 10 cm2 by using a batch reactor.

 

Keywords:  electrocoagulation, landfill leachate, chemical oxygen demand, turbidity

 

Abstrak

Proses elektrokoagulasi diklasifikasikan sebagai teknologi hijau untuk merawat tapak pelupusan larut lesap. Reka bentuk eksperimen 16 faktorial penuh telah digunakan untuk menilai dan mengoptimumkan kaedah elektrokoagulasi dan untuk mencapai kompromi antara kecekapan dan kos operasi. Kajian ini menilai tiga faktor: masa operasi, voltan dan saiz elektrod untuk menentukan parameter yang paling mempengaruhi dan menerangkan interaksi antara parameter untuk permintaan oksigen kimia (COD) dan penyingkiran kekeruhan. Keputusan analisis statistik menggunakan plot separa normal menunjukkan bahawa semua faktor utama mempunyai kesan yang ketara ke atas kecekapan penyingkiran COD dan kekeruhan. Carta Pareto mendedahkan, untuk COD dan kecekapan penyingkiran kekeruhan, urutan kepentingan ialah voltan > masa operasi > saiz elektrod > interaksi antara voltan dan saiz elektrod.. Pekali regresi terbaik (R2) diperoleh untuk COD dan kekeruhan mencapai nilai masing-masing 0.9597 dan 0.9908 mengesahkan bahawa nilai yang diramalkan adalah mematuhi nilai eksperimen yang membayangkan kesesuaian model regresi yang digunakan. Hasil proses pengoptimuman menunjukkan bahawa untuk memaksimumkan kecekapan penyingkiran COD dan kekeruhan, tahap masa operasi yang optimum adalah 30 minit, voltan 30 V dan elektrod 10 cm2 dengan menggunakan reaktor batch.

 

Kata kunci:  elektrokoagulasi, larut lesap tapak pelupusan, permintaan oksigen kimia, kekeruhan

 

 


Graphical Abstract


 

 

References

1.      Adhikari, B., Dahal, K. R. and Nath Khanal, S. (2014). A review of factors affecting the composition of municipal solid waste landfill leachate. International Journal of Engineering Science and Innovative Technology, 3(5): 273-281.

2.      Hoai, S. T., Nguyen Lan, H., Thi Viet, N. T., Nguyen Hoang, G. and Kawamoto, K. (2021). Characterizing seasonal variation in landfill leachate using leachate pollution index (LPI) at nam son solid waste landfill in Hanoi, Vietnam. Environments, 8(3): 17.

3.      Zailani, L. M. and Zin, N. S. M. (2018). Application of electrocoagulation in various wastewater and leachate treatment-A review. In IOP Conference Series: Earth and Environmental Science, 140(1): 012052.

4.      Makde, K. N. and Hedaoo, M. N. (2018). Application of electrocoagulation in wastewater treatment: A general review. International Research Journal of Engineering and Technology, 5(12): 1567-1572.

5.      Musa, M. A. and Idrus, S. (2021). Physical and biological treatment technologies of slaughterhouse wastewater: A review. Sustainability, 13(9): 4656.

6.      Castillo-Suárez, L. A., Bruno-Severo, F., Lugo-Lugo, V., Esparza-Soto, M., Martínez-Miranda, V. and  Linares-Hernández, I. (2018). Peroxicoagulation and solar peroxicoagulation for landfill leachate treatment using a Cu–Fe system. Water, Air, & Soil Pollution, 229(12): 1-17.

7.      Jang, Y., Hou, C. H., Park, S., Kwon, K. and Chung, E. (2021). Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resources, Conservation and Recycling, 175: 105837.

8.      Gatsios, E., Hahladakis, J. N. and Gidarakos, E. (2015). Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals. Journal of Environmental Management, 154: 117-127.

9.      Pirsaheb, M., Mohamadisorkali, H., Hossaini, H., Hossini, H. and Makhdoumi, P. (2020). The hybrid system successfully to consisting of activated sludge and biofilter process from hospital wastewater: Ecotoxicological study. Journal of Environmental Management, 276: 111098.

10.   Chairunnisak, A., Arifin, B., Sofyan, H. and Lubis, M. R. (2018, March). Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization. In IOP Conference Series: Materials Science and Engineering, 334(1): 012026.

11.   Amarine, M., Lekhlif, B., Sinan, M., El Rharras, A. and Echaabi, J. (2020). Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundwater for Sustainable Development, 11: 100371.

12.   Bajpai, M., Singh Katoch, S. and Singh, M. (2020). Optimization and economical study of electro-coagulation unit using CCD to treat real graywater and its reuse potential. Environmental Science and Pollution Research, 27(33): 42040-42050.

13.   Naje, A. S. and Abbas, S. A. (2013). Electrocoagulation technology in wastewater treatment: a review of methods and applications. Civil and Environmental Research, 3(11): 29-42.

14.   Rusdianasari, R., Taqwa, A., Jaksen, J. and Syakdani, A. (2017). Treatment of landfill leachate by electrocoagulation using aluminum electrodes. In MATEC Web of Conferences, 101: 02010.

15.   Shadmehr, J., Mirsoleimani-azizi, S. M., Zeinali, S. and Setoodeh, P. (2019). Electrocoagulation process for propiconazole elimination from wastewater: experimental design for correlative modeling and optimization. International Journal of Environmental Science and Technology, 16(10): 5409-5420.

16.   Akhter, F., Soomro, S. A., Siddique, M. and Ahmed, M. (2021). Pollutant Removal efficiency of electrocoagulation method from industrial wastewater: Comparison with other treatment methods and key operational parameters—a comparative study review. Water, Air, & Soil Pollution, 232(3): 1-13.

17.   Mallesh, B. (2018). A review of electrocoagulation process for wastewater treatment. International Journal Chemical Technology Research, 11: 289-320.

18.   Graça, N. S., Ribeiro, A. M. and Rodrigues, A. E. (2019). Removal of fluoride from water by a continuous electrocoagulation process. Industrial & Engineering Chemistry Research, 58(13): 5314-5321.