Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 652 - 663
CHEMICAL OXYGEN DEMAND AND TURBIDITY REMOVAL OF
LANDFILL LEACHATE USING ELECTROCOAGULATION TECHNIQUE WITH Al ELECTRODE
(Penyingkiran Permintaan Oksigen Kimia dan
Kekeruhan daripada Larut Resap Tapak Pelupusan dengan Menggunakan Elektrod Al)
Norilhamiah Yahya1*, M. Firdaus Mamat1,
Suhaini Mamat1, Nabila A. Karim2
1Malaysian Institute of Chemical and
Bioengineering Technology,
Universiti Kuala Lumpur, 78000 Alor Gajah, Malacca, Malaysia
2Fuel Cell Institute,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
*Corresponding author: norilhamiah@unikl.edu.my
Received: 2 December 2021;
Accepted: 6 March 2022; Published: 27
June 2022
Abstract
The electrocoagulation process is classified as green technology to treat
landfill leachates. A 16 full factorial experimental design evaluated and
optimized the electrocoagulation method and compromised efficiency and
operational costs. This study assessed three factors: operation time, voltage,
and electrode size, to determine the most influencing parameters and describe
the interaction between chemical oxygen demand (COD) and turbidity removal.
Statistical analysis results using a half-normal plot demonstrated that all
main factors significantly affected the removal efficiency of COD and
turbidity. The Pareto chart reveals that the order of significance for COD and
turbidity removal efficiency was voltage > operation time > electrode
size> interaction between voltage and electrode. The best regression
coefficients (R2) were obtained for COD and turbidity, which reached
0.9597 and 0.9908, respectively, confirming that the predicted values complied
with the experimental values. This implied the appropriateness of the employed
regression model. The optimization process results showed that for maximizing
the removal efficiency of COD and turbidity, the optimal level of operation
time was 30 min, voltage 30 V and electrode 10 cm2 by using a batch reactor.
Keywords: electrocoagulation,
landfill leachate, chemical oxygen demand, turbidity
Abstrak
Proses elektrokoagulasi diklasifikasikan sebagai teknologi hijau untuk
merawat tapak pelupusan larut lesap. Reka bentuk eksperimen 16 faktorial penuh
telah digunakan untuk menilai dan mengoptimumkan kaedah elektrokoagulasi dan
untuk mencapai kompromi antara kecekapan dan kos operasi. Kajian ini menilai
tiga faktor: masa operasi, voltan dan saiz elektrod untuk menentukan parameter
yang paling mempengaruhi dan menerangkan interaksi antara parameter untuk permintaan
oksigen kimia (COD) dan penyingkiran kekeruhan. Keputusan analisis statistik
menggunakan plot separa normal menunjukkan bahawa semua faktor utama mempunyai
kesan yang ketara ke atas kecekapan penyingkiran COD dan kekeruhan. Carta
Pareto mendedahkan, untuk COD dan kecekapan penyingkiran kekeruhan, urutan
kepentingan ialah voltan > masa operasi > saiz elektrod > interaksi
antara voltan dan saiz elektrod.. Pekali regresi terbaik (R2)
diperoleh untuk COD dan kekeruhan mencapai nilai masing-masing 0.9597 dan
0.9908 mengesahkan bahawa nilai yang diramalkan adalah mematuhi nilai
eksperimen yang membayangkan kesesuaian model regresi yang digunakan. Hasil
proses pengoptimuman menunjukkan bahawa untuk memaksimumkan kecekapan
penyingkiran COD dan kekeruhan, tahap masa operasi yang optimum adalah 30
minit, voltan 30 V dan elektrod 10 cm2 dengan menggunakan reaktor
batch.
Kata kunci: elektrokoagulasi, larut lesap tapak pelupusan, permintaan oksigen kimia,
kekeruhan
Graphical Abstract
References
1.
Adhikari,
B., Dahal, K. R. and Nath Khanal, S. (2014). A review of factors affecting the
composition of municipal solid waste landfill leachate. International Journal of Engineering Science and Innovative Technology,
3(5): 273-281.
2.
Hoai,
S. T., Nguyen Lan, H., Thi Viet, N. T., Nguyen Hoang, G. and Kawamoto, K.
(2021). Characterizing seasonal variation in landfill leachate using leachate
pollution index (LPI) at nam son solid waste landfill in Hanoi, Vietnam. Environments, 8(3): 17.
3.
Zailani,
L. M. and Zin, N. S. M. (2018). Application of electrocoagulation in various
wastewater and leachate treatment-A review. In IOP Conference Series: Earth and Environmental Science, 140(1):
012052.
4.
Makde,
K. N. and Hedaoo, M. N. (2018). Application of electrocoagulation in wastewater
treatment: A general review. International
Research Journal of Engineering and Technology, 5(12): 1567-1572.
5.
Musa,
M. A. and Idrus, S. (2021). Physical and biological treatment technologies of
slaughterhouse wastewater: A review. Sustainability,
13(9): 4656.
6.
Castillo-Suárez,
L. A., Bruno-Severo, F., Lugo-Lugo, V., Esparza-Soto, M., Martínez-Miranda, V.
and Linares-Hernández, I. (2018).
Peroxicoagulation and solar peroxicoagulation for landfill leachate treatment
using a Cu–Fe system. Water, Air, &
Soil Pollution, 229(12): 1-17.
7.
Jang,
Y., Hou, C. H., Park, S., Kwon, K. and Chung, E. (2021). Direct electrochemical
lithium recovery from acidic lithium-ion battery leachate using intercalation
electrodes. Resources, Conservation and
Recycling, 175: 105837.
8.
Gatsios,
E., Hahladakis, J. N. and Gidarakos, E. (2015). Optimization of
electrocoagulation (EC) process for the purification of a real industrial
wastewater from toxic metals. Journal of
Environmental Management, 154: 117-127.
9.
Pirsaheb,
M., Mohamadisorkali, H., Hossaini, H., Hossini, H. and Makhdoumi, P. (2020).
The hybrid system successfully to consisting of activated sludge and biofilter
process from hospital wastewater: Ecotoxicological study. Journal of Environmental Management, 276: 111098.
10.
Chairunnisak,
A., Arifin, B., Sofyan, H. and Lubis, M. R. (2018, March). Comparative study on
the removal of COD from POME by electrocoagulation and electro-Fenton methods:
Process optimization. In IOP Conference
Series: Materials Science and Engineering, 334(1): 012026.
11.
Amarine,
M., Lekhlif, B., Sinan, M., El Rharras, A. and Echaabi, J. (2020). Treatment of
nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundwater for Sustainable Development, 11:
100371.
12.
Bajpai,
M., Singh Katoch, S. and Singh, M. (2020). Optimization and economical study of
electro-coagulation unit using CCD to treat real graywater and its reuse
potential. Environmental Science and
Pollution Research, 27(33): 42040-42050.
13.
Naje,
A. S. and Abbas, S. A. (2013). Electrocoagulation technology in wastewater
treatment: a review of methods and applications. Civil and Environmental Research, 3(11): 29-42.
14.
Rusdianasari,
R., Taqwa, A., Jaksen, J. and Syakdani, A. (2017). Treatment of landfill
leachate by electrocoagulation using aluminum electrodes. In MATEC Web of Conferences, 101: 02010.
15.
Shadmehr,
J., Mirsoleimani-azizi, S. M., Zeinali, S. and Setoodeh, P. (2019).
Electrocoagulation process for propiconazole elimination from wastewater:
experimental design for correlative modeling and optimization. International Journal of Environmental
Science and Technology, 16(10): 5409-5420.
16.
Akhter,
F., Soomro, S. A., Siddique, M. and Ahmed, M. (2021). Pollutant Removal
efficiency of electrocoagulation method from industrial wastewater: Comparison
with other treatment methods and key operational parameters—a comparative study
review. Water, Air, & Soil Pollution,
232(3): 1-13.
17.
Mallesh,
B. (2018). A review of electrocoagulation process for wastewater treatment. International Journal Chemical Technology
Research, 11: 289-320.
18.
Graça, N. S., Ribeiro,
A. M. and Rodrigues, A. E. (2019). Removal of fluoride from water by a
continuous electrocoagulation process. Industrial
& Engineering Chemistry Research, 58(13): 5314-5321.