Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 640 - 651

 

 

 

 

PHYSICAL AND ELECTROCHEMICAL CHARACTERISTICS OF LiCo0.6Sr0.4O2 CATHODE INK FOR INTERMEDIATE-LOW TEMPERATURE SOLID OXIDE FUEL CELL

 

(Pencirian Fizikal dan Elektrokimia Terhadap Dakwat Katod LiCo0.6Sr0.4O2 bagi Sel Fuel Oksida Pepejal Bersuhu Sederhana Rendah)

 

Nur Nadhihah Mohd Tahir1, Nurul Akidah Baharuddin1*, Wan Nor Anasuhah Wan Yusoff1, Azreen Junaida Abd Aziz1, Mahendra Rao Somalu1, Andanastuti Muchtar1,2

 

1Fuel Cell Institute

2Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  akidah@ukm.edu.my

 

 

Received: 30 November 2021; Accepted: 27 February 2022; Published:  27 June 2022 

 

 

Abstract

Solid oxide fuel cell (SOFC) is a technology used to generate electricity with less emission. Selection of a suitable, compatible cathode material that will be used with the ionic and protonic electrolyte is crucial in achieving an excellent performance of intermediate-low temperature SOFC. LiCo0.6Sr0.4O2 (LCSO) is stoichiometrically prepared via glycine nitrate combustion followed by ball milling and triple roll mill (TRM) machine to produce a homogeneous LCSO cathode ink. The prepared sample powder of LCSO is initially characterised by X-ray diffraction (XRD) and scanning electron microscope (SEM) fitted with energy-dispersive X-ray spectroscopy. The XRD demonstrated that the prepared LCSO powder calcined at 800 °C shows a phase structure of rhombic lattice and space group of R-3m. The prepared ink is then layered on both sides of the samarium-doped-ceria (SDC) electrolyte to produce LCSO | SDC | LCSO symmetrical cell. The prepared ink has varied gap sizes on the TRM machine. The electrochemical performance of electrochemical impedance spectroscopy reports that the best gap size is at 40 µm with the lowest polarisation resistance (Rp), of 8.32 Ω. In conclusion, this work confirms the importance of a high-quality lithium-based cathode ink in SOFC applications.

 

Keywords:  solid oxide fuel cell, cathode, ink, lithium, triple roll mill

 

Abstrak

Sel fuel oksida pepejal (SOFC) boleh dikategorikan sebagai teknologi pembebasan karbon rendah dalam menjana tenaga elektik. Pemilihan bahan katod yang sesuai dan serasi untuk digunakan bersama dengan elektrolit ionik dan protonik adalah penting dalam mencapai prestasi SOFC bersuhu sederhana-rendah (IT-LT SOFC) yang baik. LiCo0.6Sr0.4O2 (LCSO) telah disediakan mengikut stoikiometri menggunakan pembakaran glisin nitrat diikuti dengan pengisaran bebola dan pengisaran tiga penggelek untuk menghasilkan dakwat katod LCSO yang homogen. Serbuk sampel LCSO yang disediakan pada mulanya dicirikan menggunakan pembelauan sinar-X (XRD) dan mikroskop elektron pengimbasan (SEM) yang dipasang dengan spektroskopi sinar-X penyebaran tenaga (EDX). Hasil dapatan XRD menunjukkan kalsin serbuk katod LCSO yang disediakan pada 800 °C menunjukkan struktur fasa kekisi Rhombo dan kumpulan ruang R-3m Dakwat yang disediakan kemudiannya disapukan pada kedua-dua belah elektrolit samarium terdop seria (SDC) untuk menghasilkan sel simetri LCSO | SDC | LCSO. Dakwat yang disediakan dipelbagaikan saiz celah mesin gulung tiga. Daripada prestasi elektrokimia spektroskopi impedans elektrokimia (EIS) melaporkan bahawa saiz celah terbaik adalah pada 40 µm dengan rintangan polarisasi terendah, Rp 8.32 Ω Kesimpulannya, kajian ini mengesahkan kepentingan dakwat katod berasaskan litium berkualiti tinggi dalam aplikasi SOFC.

 

Kata kunci:  sel fuel oksida pepejal, katod, dakwat, litium, pengisar tiga penggelek

 


Graphical Abstract


 

 

References

1.      Ali, S. M., Anwar, M., Abdalla, A. M., Somalu, M. R. and Muchtar, A. (2017). Ce0.80Sm0.10Ba0.05Er0. 05O2-δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceramics International, 43(1): 1265-1271.

2.      Rashid, N. L. R. M., Samat, A. A., Jais, A. A., Somalu, M. R., Muchtar, A., Baharuddin, N. A. and Isahak, W. N. R. W. (2019). Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell. Ceramics International, 45(6): 6605-6615.

3.      Baharuddin, N. A., Abdul Rahman, N. F., Abd. Rahman, H., Somalu, M. R., Azmi, M. A. and Raharjo, J. (2020). Fabrication of high‐quality electrode films for solid oxide fuel cell by screen printing: a review on important processing parameters. International Journal of Energy Research, 44(11): 8296-8313.

4.      Abd Aziz, A. J., Baharuddin, N. A., Somalu, M. R. and Muchtar, A. (2020). Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications. Ceramics International, 46(15): 23314-23325.

5.      Tahir, N. N. M., Baharuddin, N. A., Samat, A. A., Osman, N. and Somalu, M. R. (2022). A review on cathode materials for conventional and proton-conducting solid oxide fuel cells. Journal of Alloys and Compounds, 894: 162458.

6.      Kim, M., Kim, D. H., Han, G. D., Choi, H. J., Choi, H. R. and Shim, J. H. (2020). Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. Journal of Alloys and Compounds, 843: 155806.

7.      Rainwater, B. H., Liu, M. and Liu, M. (2012). A more efficient anode microstructure for SOFCs based on proton conductors. International Journal of Hydrogen Energy, 37(23): 18342-18348.

8.      Dwivedi, S. (2020). Solid oxide fuel cell: Materials for anode, cathode and electrolyte. International Journal of Hydrogen Energy, 45(44): 23988-24013.

9.      Rosli, A. Z., Somalu, M. R., Osman, N. and Hamid, N. A. (2021). Physical characterization of LSCF-NiO as cathode material for intermediate temperature solid oxide fuel cell (IT-SOFCs). Materials Today: Proceedings, 46:1895-1900.

10.   Samat, A. A., Somalu, M. R., Muchtar, A. and Osman, N. (2019, June). Electrochemical performance of La0. 6Sr0. 4CoO3-δ cathode in air and wet air for BaCe0.54Zr0.36Y0.1O3-based proton-conducting solid oxide fuel cell. In IOP Conference Series: Earth and Environmental Science, 268(1): 012136.

11.   Lv, H., Jin, Z., Peng, R., Liu, W. and Gong, Z. (2019). BaCoxFe0. 7-xZr0. 3O3-δ (0.2≤ x≤ 0.5) as cathode materials for proton-based SOFCs. Ceramics International, 45(18): 23948-23953.

12.   Huan, D., Shi, N., Xie, Y., Li, X., Wang, W., Xue, S., ... and Lu, Y. (2020). Cathode materials for proton-conducting solid oxide fuel cells. Intermediate Temperature Solid Oxide Fuel Cells: pp. 263-314.

13.   Le, S., Zhu, S., Zhu, X. and Sun, K. (2013). Densification of Sm0. 2Ce0.8O1.9 with the addition of lithium oxide as sintering aid. Journal of Power Sources, 222: 367-372.

14.   Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen, J. T., Huang, Y. H. and Goodenough, J. B. (2011). Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy & Environmental Science, 4(2): 269-284.

15.   Hofmann, T., Westhoff, D., Feinauer, J., Andrä, H., Zausch, J., Schmidt, V. and Mueller, R. (2020). Electro-chemo-mechanical simulation for lithium ion batteries across the scales. International Journal of Solids and Structures, 184: 24-39.

16.   Janowitz, K., Kah, M. and Wendt, H. (1999). Molten carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in lithium/potassium and lithium/sodium carbonate melts. Electrochimica Acta, 45(7): 1025-1037.

17.   Accardo, G., Kim, G. S., Ham, H. C. and Yoon, S. P. (2019). Optimized lithium-doped ceramic electrolytes and their use in fabrication of an electrolyte-supported solid oxide fuel cell. International Journal of Hydrogen Energy, 44(23): 12138-12150.

18.   Preethi, S., Abhiroop, M. and Babu, K. S. (2019). Low temperature densification by lithium co-doping and its effect on ionic conductivity of samarium doped ceria electrolyte. Ceramics International, 45(5): 5819-5828.

19.   Kanthachan, J., Khamman, O., Intatha, U. and Eitssayeam, S. (2021). Effect of reducing calcination processing on structural and electrochemical properties of LiNi0.5Mn0.3Co0.2O2 cathode materials for lithium battery. Materials Today: Proceedings, 47: 3600-3603.

20.   Hu, X., Qiang, W. and Huang, B. (2017). Surface layer design of cathode materials based on mechanical stability towards long cycle life for lithium secondary batteries. Energy Storage Materials, 8: 141-146.

21.   Peng, Y., Tan, R., Ma, J., Li, Q., Wang, T. and Duan, X. (2019). Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 7(24): 14681-14688.

22.   Yan, R., Oschatz, M. and Wu, F. (2020). Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon, 161, 162-168.

23.   Zhang, L., Lan, R., Kraft, A., Wang, M. and Tao, S. (2010). Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode. Electrochemistry Communications, 12(11): 1589-1592.

24.   Hussain, S. and Yangping, L. (2020). Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions, 4(2): 113-126.

25.   Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. and Irvine, J. T. (2018). A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells. Journal of Materials Chemistry A, 6(22): 10411-10420.

26.   Yuan, K., Yu, Y., Wu, Y., Ji, X., Xu, Z. and Shen, J. (2018). Plasma sprayed coatings for low-temperature SOFC and high temperature effects on Lix (Ni, Co) yO2 catalyst layers. International Journal of Hydrogen Energy, 43(28): 12782-12788.

27.   Wan Yusoff, W. N. A., Somalu, M. R., Baharuddin, N. A., Muchtar, A. and Wei, L. J. (2020). Enhanced performance of lithiated cathode materials of LiCo0.6X0.4O2 (X= Mn, Sr, Zn) for proton-conducting solid oxide fuel cell applications. International Journal of Energy Research, 44(14): 11783-11793.

28.   Yusoff, W. N. A. W., Norman, N. W., Samat, A. A., Somalu, M. R., Muchtar, A. and Baharuddin, N. A. (2019). Performance of LiCo0.6Zn0.4O2 as a potential cathode material candidate for intermediate solid oxide fuel cell application. In IOP Conference Series: Earth and Environmental Science, 268(1): 012139.

29.   Zhang, Y., Yang, G., Chen, G., Ran, R., Zhou, W. and Shao, Z. (2016). Evaluation of the CO2 poisoning effect on a highly active cathode SrSc0.175Nb0.025Co0.8O3-δ in the oxygen reduction reaction. ACS Applied Materials & Interfaces, 8(5): 3003-3011.

30.   Jamil, S. M., Othman, M. H. D., Rahman, M. A., Jaafar, J., Mohamed, M. A., Yusop, M. Z. M., ... and Tanemura, M. (2017). Dual-layer hollow fiber MT-SOFC using lithium doped CGO electrolyte fabricated via phase-inversion technique. Solid State Ionics, 304: 113-125.

31.   Ratso, S., Zitolo, A., Käärik, M., Merisalu, M., Kikas, A., Kisand, V., ... and Tammeveski, K. (2021). Non-precious metal cathodes for anion exchange membrane fuel cells from ball-milled iron and nitrogen doped carbide-derived carbons. Renewable Energy, 167: 800-810.

32.   Olowojoba, G., Sathyanarayana, S., Caglar, B., Kiss-Pataki, B., Mikonsaari, I., Hübner, C. and Elsner, P. (2013). Influence of process parameters on the morphology, rheological and dielectric properties of three-roll-milled multiwalled carbon nanotube/epoxy suspensions. Polymer, 54(1): 188-198.

33.   Böttcher, A. C., Thon, C., Fragničre, G., Chagas, A., Schilde, C. and Kwade, A. (2021). Rigidly-mounted roll mill as breakage tester for characterizing fine particle breakage. Powder Technology, 383: 554-563.

34.   Abdul, S. A., Yusoff, W. N. A. W., Baharuddin, N. A., Somalu, M. R., Muchtar, A. and Osman, N. (2018). Electrochemical performance of sol-gel derived La0.6S0.4CoO3-δ cathode material for proton-conducting fuel cell: A comparison between simple and advanced cell fabrication techniques. Processing and Application of Ceramics, 12(3): 277-286.

35.   Somalu, M. R., Muchtar, A., Daud, W. R. W. and Brandon, N. P. (2017). Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75: 426-439.

36.   Sun, G., Yu, F. D., Zhao, C., Yu, R., Farnum, S., Shao, G., ... and Wang, Z. B. (2021). Decoupling the voltage hysteresis of Li‐rich cathodes: electrochemical monitoring, modulation anionic redox chemistry and theoretical verifying. Advanced Functional Materials, 31(1): 2002643.