Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 640 - 651
PHYSICAL AND ELECTROCHEMICAL CHARACTERISTICS OF LiCo0.6Sr0.4O2
CATHODE INK FOR INTERMEDIATE-LOW TEMPERATURE SOLID OXIDE FUEL CELL
(Pencirian
Fizikal dan Elektrokimia Terhadap Dakwat Katod LiCo0.6Sr0.4O2
bagi Sel Fuel Oksida Pepejal Bersuhu Sederhana Rendah)
Nur Nadhihah Mohd Tahir1, Nurul Akidah
Baharuddin1*, Wan Nor Anasuhah Wan Yusoff1, Azreen
Junaida Abd Aziz1, Mahendra Rao Somalu1, Andanastuti
Muchtar1,2
1Fuel Cell Institute
2Department of Mechanical and Manufacturing Engineering, Faculty of
Engineering and Built Environment
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
*Corresponding author: akidah@ukm.edu.my
Received: 30 November 2021;
Accepted: 27 February 2022; Published:
27 June 2022
Abstract
Solid oxide fuel cell
(SOFC) is a technology used to generate electricity with less emission.
Selection of a suitable, compatible cathode material that will be used with the
ionic and protonic electrolyte is crucial in achieving an excellent performance
of intermediate-low temperature SOFC. LiCo0.6Sr0.4O2
(LCSO) is stoichiometrically prepared via glycine nitrate combustion followed
by ball milling and triple roll mill (TRM) machine to produce a homogeneous
LCSO cathode ink. The prepared sample powder of LCSO is initially characterised
by X-ray diffraction (XRD) and scanning electron microscope (SEM) fitted with
energy-dispersive X-ray spectroscopy. The XRD demonstrated that the prepared
LCSO powder calcined at 800 °C shows a phase structure of rhombic lattice and
space group of R-3m. The prepared ink is then layered on both sides of the
samarium-doped-ceria (SDC) electrolyte to produce LCSO | SDC | LCSO symmetrical
cell. The prepared ink has varied gap sizes on the TRM machine. The
electrochemical performance of electrochemical impedance spectroscopy reports
that the best gap size is at 40 µm with the lowest polarisation resistance (Rp),
of 8.32 Ω. In conclusion, this work confirms the importance of a
high-quality lithium-based cathode ink in SOFC applications.
Keywords: solid oxide fuel cell, cathode, ink, lithium, triple roll mill
Abstrak
Sel fuel oksida pepejal (SOFC)
boleh dikategorikan sebagai teknologi pembebasan karbon rendah dalam menjana
tenaga elektik. Pemilihan
bahan katod yang sesuai dan serasi untuk digunakan bersama dengan elektrolit
ionik dan protonik adalah penting dalam mencapai prestasi SOFC bersuhu
sederhana-rendah (IT-LT SOFC) yang baik. LiCo0.6Sr0.4O2
(LCSO) telah disediakan mengikut stoikiometri menggunakan pembakaran glisin
nitrat diikuti dengan pengisaran bebola dan pengisaran tiga penggelek untuk
menghasilkan dakwat katod LCSO yang homogen. Serbuk sampel LCSO yang disediakan
pada mulanya dicirikan menggunakan pembelauan sinar-X (XRD) dan mikroskop
elektron pengimbasan (SEM) yang dipasang dengan spektroskopi sinar-X penyebaran
tenaga (EDX). Hasil dapatan XRD menunjukkan kalsin serbuk katod LCSO yang
disediakan pada 800 °C menunjukkan struktur fasa kekisi Rhombo dan kumpulan
ruang R-3m Dakwat yang disediakan kemudiannya disapukan pada kedua-dua belah
elektrolit samarium terdop seria (SDC) untuk menghasilkan sel simetri LCSO |
SDC | LCSO. Dakwat yang disediakan dipelbagaikan saiz celah mesin gulung tiga.
Daripada prestasi elektrokimia spektroskopi impedans elektrokimia (EIS)
melaporkan bahawa saiz celah terbaik adalah pada 40 µm dengan rintangan
polarisasi terendah, Rp 8.32 Ω Kesimpulannya, kajian ini
mengesahkan kepentingan dakwat katod berasaskan litium berkualiti tinggi dalam
aplikasi SOFC.
Kata kunci: sel fuel oksida pepejal, katod, dakwat, litium, pengisar tiga
penggelek
Graphical Abstract
References
1.
Ali, S. M., Anwar, M.,
Abdalla, A. M., Somalu, M. R. and Muchtar, A. (2017). Ce0.80Sm0.10Ba0.05Er0.
05O2-δ multi-doped ceria electrolyte for intermediate temperature solid
oxide fuel cells. Ceramics International,
43(1): 1265-1271.
2.
Rashid, N. L. R. M., Samat, A. A., Jais, A. A., Somalu, M.
R., Muchtar, A., Baharuddin, N. A. and Isahak, W. N. R. W. (2019). Review on
zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel
cell. Ceramics International, 45(6):
6605-6615.
3.
Baharuddin, N. A., Abdul Rahman, N. F., Abd. Rahman, H.,
Somalu, M. R., Azmi, M. A. and Raharjo, J. (2020). Fabrication of high‐quality
electrode films for solid oxide fuel cell by screen printing: a review on
important processing parameters. International
Journal of Energy Research, 44(11): 8296-8313.
4.
Abd Aziz, A. J., Baharuddin, N. A., Somalu, M. R. and
Muchtar, A. (2020). Review of composite cathodes for intermediate-temperature
solid oxide fuel cell applications. Ceramics
International, 46(15): 23314-23325.
5.
Tahir, N. N. M., Baharuddin, N. A., Samat, A. A., Osman,
N. and Somalu, M. R. (2022). A review on cathode materials for conventional and
proton-conducting solid oxide fuel cells. Journal
of Alloys and Compounds, 894: 162458.
6.
Kim, M., Kim, D. H., Han, G. D., Choi, H. J., Choi, H. R.
and Shim, J. H. (2020). Lanthanum strontium cobaltite-infiltrated lanthanum
strontium cobalt ferrite cathodes fabricated by inkjet printing for
high-performance solid oxide fuel cells. Journal
of Alloys and Compounds, 843: 155806.
7.
Rainwater, B. H., Liu, M. and Liu, M. (2012). A more
efficient anode microstructure for SOFCs based on proton conductors. International Journal of Hydrogen Energy,
37(23): 18342-18348.
8.
Dwivedi, S. (2020). Solid oxide fuel cell: Materials for
anode, cathode and electrolyte. International
Journal of Hydrogen Energy, 45(44): 23988-24013.
9.
Rosli, A. Z., Somalu, M. R., Osman, N. and Hamid, N. A.
(2021). Physical characterization of LSCF-NiO as cathode material for
intermediate temperature solid oxide fuel cell (IT-SOFCs). Materials Today: Proceedings, 46:1895-1900.
10.
Samat, A. A., Somalu, M. R., Muchtar, A. and Osman, N.
(2019, June). Electrochemical performance of La0. 6Sr0. 4CoO3-δ cathode in
air and wet air for BaCe0.54Zr0.36Y0.1O3-based proton-conducting solid oxide
fuel cell. In IOP Conference Series:
Earth and Environmental Science, 268(1): 012136.
11.
Lv, H., Jin, Z., Peng, R., Liu, W. and Gong, Z. (2019). BaCoxFe0. 7-xZr0.
3O3-δ (0.2≤ x≤ 0.5) as cathode materials for proton-based
SOFCs. Ceramics International, 45(18): 23948-23953.
12.
Huan, D., Shi, N., Xie, Y., Li, X., Wang, W., Xue, S., ... and Lu, Y.
(2020). Cathode materials for proton-conducting solid oxide fuel cells. Intermediate
Temperature Solid Oxide Fuel Cells: pp. 263-314.
13.
Le, S., Zhu, S., Zhu, X. and Sun, K. (2013). Densification
of Sm0. 2Ce0.8O1.9 with the addition of lithium oxide as sintering aid. Journal
of Power Sources, 222: 367-372.
14.
Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen,
J. T., Huang, Y. H. and Goodenough, J. B. (2011). Development and challenges of
LiFePO4 cathode material for lithium-ion batteries. Energy &
Environmental Science, 4(2): 269-284.
15.
Hofmann, T., Westhoff, D., Feinauer, J., Andrä, H.,
Zausch, J., Schmidt, V. and Mueller, R. (2020). Electro-chemo-mechanical
simulation for lithium ion batteries across the scales. International
Journal of Solids and Structures, 184: 24-39.
16.
Janowitz, K., Kah, M. and Wendt, H. (1999). Molten
carbonate fuel cell research: Part I. Comparing cathodic oxygen reduction in
lithium/potassium and lithium/sodium carbonate melts. Electrochimica Acta, 45(7):
1025-1037.
17.
Accardo, G., Kim, G. S., Ham, H. C. and Yoon, S. P.
(2019). Optimized lithium-doped ceramic electrolytes and their use in
fabrication of an electrolyte-supported solid oxide fuel cell. International
Journal of Hydrogen Energy, 44(23): 12138-12150.
18.
Preethi, S., Abhiroop, M. and Babu, K. S. (2019). Low
temperature densification by lithium co-doping and its effect on ionic
conductivity of samarium doped ceria electrolyte. Ceramics International, 45(5):
5819-5828.
19.
Kanthachan, J., Khamman, O., Intatha, U. and Eitssayeam,
S. (2021). Effect of reducing calcination processing on structural and
electrochemical properties of LiNi0.5Mn0.3Co0.2O2 cathode materials for lithium
battery. Materials Today: Proceedings, 47: 3600-3603.
20.
Hu, X., Qiang, W. and Huang, B. (2017). Surface layer
design of cathode materials based on mechanical stability towards long cycle
life for lithium secondary batteries. Energy Storage Materials, 8:
141-146.
21.
Peng, Y., Tan, R., Ma, J., Li, Q., Wang, T. and Duan, X.
(2019). Electrospun Li3V2(PO4)3 nanocubes/carbon
nanofibers as free-standing cathodes for high-performance lithium-ion
batteries. Journal of Materials Chemistry A, 7(24): 14681-14688.
22.
Yan, R., Oschatz, M. and Wu, F. (2020). Towards stable
lithium-sulfur battery cathodes by combining physical and chemical confinement
of polysulfides in core-shell structured nitrogen-doped carbons. Carbon, 161,
162-168.
23.
Zhang, L., Lan, R., Kraft, A., Wang, M. and Tao, S.
(2010). Cost-effective solid oxide fuel cell prepared by single step
co-press-firing process with lithiated NiO cathode. Electrochemistry
Communications, 12(11): 1589-1592.
24.
Hussain, S. and Yangping, L. (2020). Review of solid oxide
fuel cell materials: Cathode, anode, and electrolyte. Energy Transitions,
4(2): 113-126.
25.
Hou, J., Miao, L., Hui, J., Bi, L., Liu, W. and Irvine, J.
T. (2018). A novel in situ diffusion strategy to fabricate high performance
cathodes for low temperature proton-conducting solid oxide fuel cells. Journal
of Materials Chemistry A, 6(22): 10411-10420.
26.
Yuan, K., Yu, Y., Wu, Y., Ji, X., Xu, Z. and Shen, J.
(2018). Plasma sprayed coatings for low-temperature SOFC and high temperature
effects on Lix (Ni, Co) yO2 catalyst layers. International
Journal of Hydrogen Energy, 43(28): 12782-12788.
27.
Wan Yusoff, W. N. A., Somalu, M. R., Baharuddin, N. A.,
Muchtar, A. and Wei, L. J. (2020). Enhanced performance of lithiated cathode
materials of LiCo0.6X0.4O2 (X= Mn, Sr, Zn) for proton-conducting solid oxide fuel
cell applications. International Journal of Energy Research, 44(14):
11783-11793.
28.
Yusoff, W. N. A. W., Norman, N. W., Samat, A. A., Somalu,
M. R., Muchtar, A. and Baharuddin, N. A. (2019). Performance of LiCo0.6Zn0.4O2
as a potential cathode material candidate for intermediate solid oxide
fuel cell application. In IOP Conference Series: Earth and Environmental
Science, 268(1): 012139.
29.
Zhang, Y., Yang, G., Chen, G., Ran, R., Zhou, W. and Shao,
Z. (2016). Evaluation of the CO2 poisoning effect on a highly active
cathode SrSc0.175Nb0.025Co0.8O3-δ in the oxygen reduction reaction. ACS
Applied Materials & Interfaces, 8(5): 3003-3011.
30.
Jamil, S. M., Othman, M. H. D., Rahman, M. A., Jaafar, J.,
Mohamed, M. A., Yusop, M. Z. M., ... and Tanemura, M. (2017). Dual-layer hollow
fiber MT-SOFC using lithium doped CGO electrolyte fabricated via
phase-inversion technique. Solid State Ionics, 304: 113-125.
31.
Ratso, S., Zitolo, A., Käärik, M., Merisalu, M., Kikas,
A., Kisand, V., ... and Tammeveski, K. (2021). Non-precious metal cathodes for
anion exchange membrane fuel cells from ball-milled iron and nitrogen doped
carbide-derived carbons. Renewable Energy, 167: 800-810.
32.
Olowojoba, G., Sathyanarayana, S., Caglar, B.,
Kiss-Pataki, B., Mikonsaari, I., Hübner, C. and Elsner, P. (2013). Influence of
process parameters on the morphology, rheological and dielectric properties of
three-roll-milled multiwalled carbon nanotube/epoxy suspensions. Polymer, 54(1):
188-198.
33.
Böttcher, A. C., Thon, C., Fragničre, G., Chagas, A.,
Schilde, C. and Kwade, A. (2021). Rigidly-mounted roll mill as breakage tester
for characterizing fine particle breakage. Powder Technology, 383:
554-563.
34. Abdul,
S. A., Yusoff, W. N. A. W., Baharuddin, N. A., Somalu, M. R., Muchtar, A. and
Osman, N. (2018). Electrochemical performance of sol-gel derived
La0.6S0.4CoO3-δ cathode material for proton-conducting fuel cell: A
comparison between simple and advanced cell fabrication techniques. Processing
and Application of Ceramics, 12(3): 277-286.
35.
Somalu, M. R., Muchtar, A., Daud, W. R. W. and Brandon, N.
P. (2017). Screen-printing inks for the fabrication of solid oxide fuel cell
films: a review. Renewable and Sustainable Energy Reviews, 75: 426-439.
36.
Sun, G., Yu, F. D., Zhao, C., Yu, R., Farnum, S., Shao,
G., ... and Wang, Z. B. (2021). Decoupling the voltage hysteresis of Li‐rich
cathodes: electrochemical monitoring, modulation anionic redox chemistry and
theoretical verifying. Advanced Functional Materials, 31(1): 2002643.