Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 664 - 683

 

 

 

 

ENHANCING THE OXYGEN REDUCTION REACTION OF LOW-PLATINUM AND NON-PLATINUM CATALYSTS FOR FUEL CELL APPLICATIONS

 

(Peningkatan Tindak Balas Penurunan Oksigen Mangkin Platinum Bermuatan Rendah dan Bebas Platinum Untuk Aplikasi Sel Bahan Api)

 

Kazi Rumanna Rahman1, Kuan Ying Kok2, Nor Azillah Fatimah Othman3, Wai Yin Wong1, Kean Long Lim1*

 

1Fuel Cell Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2 Industrial Technology Division

3Radiation Processing Technology Division

Malaysia Nuclear Agency, 43000, Kajang, Selangor, Malaysia

 

*Corresponding author email:  kllim@ukm.edu.my

 

 

Received: 13 December 2021; Accepted: 6 March 2022; Published:  27 June 2022 

 

 

Abstract

Nowadays, research efforts are focused on developing low-Pt and non-Pt catalysts for ORR. The addition of Pt-group metal (PGM) in pure Pt to form Pt-PGM catalysts exhibits better ORR performance than pure PGM catalysts and Pt/C. More than 20 wt.% of Pt loading is required in Pt-PGM alloys for improving catalytic activity. Studies have also shown that the addition of transition metal (TM), which has a smaller atomic size, into PGM reduced the bond distance between two metallic atoms and geometric parameters, thus remarkably improving the catalytic stability and ORR activity. However, TM based catalysts should be supported on nitrogen-doped carbon with high surface area to attain high ORR activity. A large surface area and high electronic conductivity of carbon support also facilitate the ORR activity. Performances of alloy catalysts are directly related to their synthesis temperature and structural properties. Designing the core-shell combinations and controlling the shell thickness is one of the structural strategies in enhancing mass activity and durability. Lately, irradiation techniques are used to modify the physicochemical properties. Nevertheless, TM-based catalysts are usually stable in alkaline solutions but not in acidic solutions. This review focuses on the strategies to develop cost-effective catalysts from low-platinum and non-platinum catalysts with enhanced ORR activity.

 

Keywords:  oxygen reduction reaction, platinum group metal alloys, transition metal catalysts, synthesis techniques 

 

Abstrak

Pada masa kini, usaha penyelidikan tertumpu kepada pembangunan mangkin platinum (Pt) bermuatan rendah dan bebas platinum untuk tindak balas penurunan oksigen (ORR). Penambahan logam kumpulan Pt (PGM) dalam Pt tulen untuk membentuk Pt-PGM menunjukkan prestasi ORR yang lebih baik daripada prestasi mangkin PGM tulen dan Pt/C. Sebanyak lebih daripada 20 wt.% muatan Pt adalah diperlukan dalam aloi Pt-PGM untuk meningkatkan aktiviti pemangkinan. Kajian telah menunjukkan penambahan logam peralihan (TM) yang mempunyai saiz atom yang lebih kecil ke dalam PGM mengurangkan jarak antara dua atom logam dan parameter geometri sekali gus meningkatkan kestabilan pemangkinan dan aktiviti ORR. Namun demikian, mangkin berasakan TM perlu disokong dengan karbon terdop nitrogen yang berpermukaan yang luas untuk mencapai aktiviti ORR yang tinggi. Penyokong karbon yang berpemukaan luas dan mempunyai kekonduksian elektronik yang tinggi juga memudahkan   aktiviti ORR. Prestasi mangkin aloi adalah berkait langsung dengan suhu sintensi dan sifat strukturnya. Mereka bentuk gabungan teras-cangkerang dan mengawal ketebalan cangkerang adalah salah satu strategik penstrukturan dalam meningkatkan aktiviti jisim dan ketahanan. Akhir-akhir ini, teknik-teknik penyinaran digunakan ubah mengubahsuai sifat fizikokimia. Namun demikian, mangkin berasaskan TM biasanya stabil dalam larutan alkali tetapi tidak dalam larutan asid. Ulasan ini berfokus pada strategik untuk membangunkan magkin berkos efektif daripada mangkin Pt bermuatan rendah dan bebas platinum dengan aktitiviti ORR yang dipertingkatkan.

 

Kata kunci:  tindak balas penurunan oksigen, logam aloi kumpulan platinum, mangkin logam peralihan, kaedah sintesis

 

 


Graphical Abstract


 

 

References

1.      Rajapakse, R. M. G., Senarathna, K. G. C., Kondo, A., Jayawardena, P. S. and Shimomura, M. (2015). Extremely low-cost alternative for the oxygen reduction catalyst of fuel cell. Advances in Automobile Engineering, 4(1): 1.

2.      Zhang, Y., Huang, N., Zhou, F., He, Q. and Zhan, S. (2018). Research on the oxygen reduction reaction (ORR) mechanism of g-C3N4 doped by Ag based on first-principles calculations. Journal of the Chinese Chemical Society, 65(12): 1431-1436.

3.      She, Y., Chen, J., Zhang, C., Lu, Z., Ni, M., Sit, P. H. L. and Leung, M. K. H. (2017). Oxygen Reduction reaction mechanism of nitrogen-doped graphene derived from ionic liquid. Energy Procedia, 142: 1319-1326.

4.      Hazarika, K. K., Goswami, C., Saikia, H., Borah, B. J. and Bharali, P. (2018). Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Molecular Catalysis, 451: 153-160.

5.      Laurent-Brocq, M., Job, N., Eskenazi, D. and Pireaux, J. J. (2014). Pt/C catalyst for PEM fuel cells: Control of Pt nanoparticles characteristics through a novel plasma deposition method. Applied Catalysis B: Environmental, 147: 453-463.

6.      Shao-Horn, Y., Sheng, W. C., Chen, S., Ferreira, P. J., Holby, E. F. and Morgan, D. (2007). Instability of supported platinum nanoparticles in low-temperature fuel cells. Topics in Catalysis, 46(3–4): 285–305.

7.      Dombrovskis, J. K. and Palmqvist, A. E. C. (2016). Recent progress in synthesis, characterization and evaluation of non-precious metal catalysts for the oxygen reduction reaction. Fuel Cells, 16(1): 4-22.

8.      Holton, O. and Stevenson, J. (2013). The role of platinum in proton exchange membrane fuel cells - Johnson Matthey technology review. Platinum Metals Reviews, 57(4): 259-271.

9.      Mustain, W. E., Shrestha, S., Ashegi, S., Timbro, J., Lang, C. M. and Mustain, W. E. (2011). ORR and fuel cell performance of Pt supported on N-functionalized mesoporous carbon, ECS Transactions, 41(1): 1183.

10.   Ghosh, S., Mondal, S. and Retna Raj, C. (2014). Carbon nanotube-supported dendritic Pt-on-Pd nanostructures: Growth mechanism and electrocatalytic activity towards oxygen reduction reaction. Journal of Materials Chemistry A, 2(7): 2233-2239.

11.   Guha, A., Lu, W., Zawodzinski, T. A. and Schiraldi, D. A. (2007). Surface-modified carbons as platinum catalyst support for PEM fuel cells, Carbon, 45: 1506-1517.

12.   Mun, Y., Lee, S., Kim, K., Kim, S., Lee, S., Han, J. W. and Lee, J. (2019). Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. Journal of the American Chemical Society, 141(15): 6254-6262.

13.   Kodali, M., Santoro, C., Serov, A., Kabir, S., Artyushkova, K., Matanovic, I. and Atanassov, P. (2017). Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts. Electrochimica Acta, 231: 115-124.

14.   Song, M., Song, Y., Sha, W., Xu, B., Guo, J. and Wu, Y. (2020). Recent advances in non-precious transition metal/nitrogen-doped carbon for oxygen reduction electrocatalyst. Catalysts, 10(1): 141.

15.   Mao, J., Liu, P., Du, C., Liang, D., Yan, J. and Song, W. (2019). Tailoring 2D MoS2 heterointerfaces for promising oxygen reduction reaction electrocatalysis. Journal of Materials Chemistry A, 7(15): 8785-8789.

16.   Ma, R., Lin, G., Zhou, Y., Liu, Q., Zhang, T., Shan, G. and Wang, J. (2019). A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. NPJ Computational Materials, 5(1): 1-15.

17.   Tang, Z., Wu, W. and Wang, K. (2018). Oxygen reduction reaction catalyzed by noble metal clusters. Catalysts, 8(2): 65.

18.   Kim, J. Y., Oh, T. K., Shin, Y., Bonnett, J. and Weil, K. S. (2011). A novel non-platinum group electrocatalyst for PEM fuel cell application. International Journal of Hydrogen Energy, 36(7): 4557-4564.

19.   Wang, B. (2005). Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 152(1–2): 1-15.

20.   Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S. and Liu, C. J. (2017). A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, 5(5): 1808-1825.

21.   Raciti, D., Kubal, J., Ma, C., Barclay, M., Gonzalez, M., Chi, M. and Wang, C. (2016). Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy, 20: 202-211.

22.   Hyun, K., Lee, J. H., Yoon, C. W. and Kwon, Y. (2013). The effect of platinum based bimetallic electrocatalysts on oxygen reduction reaction of proton exchange membrane fuel cells. International Journal of Electrochemical Science, 8(10): 11752-11767.

23.   Tian, J., Wu, W., Tang, Z., Wu, Y., Burns, R., Tichnell, B. and Chen, S. (2018). Oxygen reduction reaction and hydrogen evolution reaction catalyzed by Pd–Ru nanoparticles encapsulated in porous carbon nanosheets. Catalysts, 8(8): 1-15.

24.   Zhou, Z. M., Shao, Z. G., Qin, X. P., Chen, X. G., Wei, Z. D. and Yi, B. L. (2010). Durability study of Pt-Pd/C as PEMFC cathode catalyst. International Journal of Hydrogen Energy, 35(4): 1719-1726.

25.   Wang, W., Wang, Z., Wang, J., Zhong, C. J. and Liu, C. J. (2017). Highly active and stable Pt–Pd Alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Advanced Science, 4(4): 1-9.

26.   Yusof, M. S. M., Jalil, A. A., Ahmad, A., Triwahyono, S., Othman, M. H. D., Abdullah, T. A. T. and Nabgan, W. (2019). Effect of Pt–Pd/C coupled catalyst loading and polybenzimidazole ionomer binder on oxygen reduction reaction in high-temperature PEMFC. International Journal of Hydrogen Energy, 2019: 20760-20769.

27.   Thanasilp, S. and Hunsom, M. (2011). Effect of Pt: Pd atomic ratio in Pt-Pd/C electrocatalyst-coated membrane on the electrocatalytic activity of ORR in PEM fuel cells. Renewable Energy, 36(6): 1795-1801.

28.   Jackson, C., Conrad, O. and Levecque, P. (2017). Systematic study of Pt-Ru/C catalysts prepared by chemical deposition for direct methanol fuel cells. Electrocatalysis, 8(3): 224-234.

29.   Huang, H., Zhu, J., Li, D., Shen, C., Li, M., Zhang, X. and Wu, Y. (2017). Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation. Journal of Materials Chemistry A, 5(9): 4560-4567.

30.   Yang, G., Sun, Y., Lv, P., Zhen, F., Cao, X., Chen, X. and Kong, X. (2016). Preparation of Pt–Ru/C as an oxygen-reduction electrocatalyst in microbial fuel cells for wastewater treatment. Catalysts, 6(10): 150.

31.   Jackson, A., Strickler, A., Higgins, D. and Jaramillo, T. F. (2018). Engineering Ru@Pt core-shell catalysts for enhanced electrochemical oxygen reduction mass activity and stability. Nanomaterials, 8(1): 38.

32.   Tolmachev, Y. V. and Petrii, O. A. (2017). Pt–Ru electrocatalysts for fuel cells: developments in the last decade. Journal of Solid State Electrochemistry, 21(3): 613-639.

33.   Durst, J., Simon, C., Hasché, F. and Gasteiger, H. A. (2015). Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. Journal of The Electrochemical Society, 162(1): F190-F203.

34.   Zeng, M., Wang, X. X., Tan, Z. H., Huang, X. X. and Wang, J. N. (2014). Remarkable durability of Pt-Ir alloy catalysts supported on graphitic carbon nanocages. Journal of Power Sources, 264: 272-281.

35.   Zheng, H. B., An, L., Zheng, Y., Qu, C., Fang, Y., Liu, Q. and Dang, D. (2018). Tuning the catalytic activity of Ir@Pt nanoparticles through controlling ir core size on cathode performance for PEM fuel cell application. Frontiers in Chemistry, 6(7): 1-7.

36.   Fang, D., Tang, X., Yang, L., Xu, D., Zhang, H., Sun, S. and Yi, B. (2019). Facile synthesis of Pt-decorated Ir black as a bifunctional oxygen catalyst for oxygen reduction and evolution reactions. Nanoscale, 11(18): 9091-9102.

37.   Zhu, J., Elnabawy, A. O., Lyu, Z., Xie, M., Murray, E. A., Chen, Z., Xia, Y. (2019). Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Materials Today, 2019: 1-9.

38.   Lin, C., Wu, G., Li, H., Geng, Y., Xie, G., Yang, J. and Jin, J. (2017). Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale, 9(5): 1834-1839.

39.   Paál, Z., Gyorffy, N., Wootsch, A., Tóth, L., Bakos, I., Szabó, S. and Schlögl, R. (2007). Preparation, physical characterization and catalytic properties of unsupported Pt-Rh catalyst. Journal of Catalysis, 250(2): 254-263.

40.   Narayanamoorthy, B., Datta, K. K. R., Eswaramoorthy, M. and Balaji, S. (2014). Self-stabilized Pt–Rh bimetallic nanoclusters as durable electrocatalysts for dioxygen reduction in PEM fuel cells. RSC Advances, 4(98): 55571-55579.

41.   Goswami, C., Hazarika, K. K. and Bharali, P. (2018). Transition metal oxide nanocatalysts for oxygen reduction reaction. Materials Science for Energy Technologies, 1(2): 117–128.

42.   Xin, L., Zhang, Z., Wang, Z., Qi, J. and Li, W. (2013). Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Frontiers in Chemistry, 1: 16.

43.   Esfandiari, A., Kazemeini, M. and Bastani, D. (2016). Synthesis, characterization and performance determination of an Ag@Pt/C electrocatalyst for the ORR in a PEM fuel cell. International Journal of Hydrogen Energy, 41(45): 20720-20730.

44.   Chiwata, M., Yano, H., Ogawa, S., Watanabe, M., Iiyama, A. and Uchida, H. (2016). Oxygen reduction reaction activity of carbon-supported Pt-Fe, Pt-Co, and Pt-Ni alloys with stabilized Pt-skin layers. Electrochemistry, 84(3), 133–137.

45.   Li, W., Pan, Z., Huang, Z., Zhou, Q., Xu, Y., Wu, S., Hu, G. (2018). Pt nanoparticles supported on titanium iron nitride nanotubes prepared as a superior electrocatalysts for methanol electrooxidation. International Journal of Hydrogen Energy, 43(20): 9777-9786.

46.   Termpornvithit, C., Chewasatn, N. and Hunsom, M. (2012). Stability of Pt-Co/C and Pt-Pd/C based oxygen reduction reaction electrocatalysts prepared at a low temperature by a combined impregnation and seeding process in PEM fuel cells. Journal of Applied Electrochemistry, 42(3): 169-178.

47.   Cui, Y., Wu, Y., Wang, Z., Yao, X., Wei, Y., Kang, Y., Gan, L. (2020). Mitigating metal dissolution and redeposition of Pt-Co catalysts in PEM fuel cells: Impacts of structural ordering and particle size. Journal of The Electrochemical Society, 167(6): 064520.

48.   Rohendi, D., Rachmat, A. and Syarif, N. (2018). Fabrication and characterization of Pt-Co/C catalyst for fuel cell electrode. Journal of Physics: Conference Series, 1095(1): 012007.

49.   Singh, R. N. (2012). Preparation of bimetallic Pd-Co nanoparticles on graphene support for use as methanol tolerant oxygen reduction electrocatalysts. Engineering, Technology & Applied Science Research, 2(6): 295-301.

50.   Ramli, Z. A. C. and Kamarudin, S. K. (2018). Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review. Nanoscale Research Letters, 13: 1-25.

51.   Mechler, A. K., Sahraie, N. R., Armel, V., Zitolo, A., Sougrati, M. T., Schwämmlein, J. N. and Jaouen, F. (2018). Stabilization of iron-based fuel cell catalysts by non-catalytic platinum. Journal of The Electrochemical Society, 165(13): F1084–F1091.

52.   Mohanraju, K. and Cindrella, L. (2014). Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Advances, 4(23): 11939-11947.

53.   Li, X. P., Xiang, X. D., Yang, H. Y., Wang, X. J., Tan, C. L. and Li, W. S. (2013). Hydrogen tungsten bronze-supported platinum as electrocatalyst for methanol oxidation. Fuel Cells, 13(2): 314-318.

54.   Seselj, N., Engelbrekt, C. and Zhang, J. (2015). Graphene-supported platinum catalysts for fuel cells. Science Bulletin, 60(9): 864-876.

55.   Lv, H., Li, D., Strmcnik, D., Paulikas, A. P., Markovic, N. M. and Stamenkovic, V. R. (2016). Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 29: 149-165.

56.   Thippani, T., Mandal, S., Wang, G., Ramani, V. K. and Kothandaraman, R. (2016). Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal-air batteries. RSC Advances, 6(75): 71122-71133.

57.   Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J. and Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5): 601-625.

58.   Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N. and Jabbari, E. (2018). Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures and Nano-Objects, 14: 19-48.

59.   Ren, G., Gao, L., Teng, C., Li, Y., Yang, H., Shui, J. and Dai, L. (2018). Ancient Chemistry “pharaoh’s Snakes” for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials and Interfaces, 10(13): 10778–10785.

60.   Gu, L., Jiang, L., Li, X., Jin, J., Wang, J. and Sun, G. (2016). A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Cuihua Xuebao/Chinese Journal of Catalysis, 37(4): 539-548.

61.   Park, M., Lee, J., Hembram, K., Lee, K.-R., Han, S., Yoon, C. and Kim, J. (2016). Oxygen reduction electrocatalysts based on coupled iron nitride nanoparticles with nitrogen-doped carbon. Catalysts, 6(6): 86.

62.   Rahman, K. R., Kok, K. Y., Wong, W. Y., Yang, H. and Lim, K. L. (2021). Effect of iron loading on the catalytic activity of Fe/N-doped reduced graphene oxide catalysts via irradiation. Applied Sciences (Switzerland), 11(1): 1-10.

63.   Xi, J., Wang, F., Mei, R., Gong, Z., Fan, X., Yang, H. and Luo, Z. (2016). Catalytic performance of a pyrolyzed graphene supported Fe-N-C composite and its application for acid direct methanol fuel cells. RSC Advances, 6(93): 90797-90805.

64.   Meng, H., Chen, X., Gong, T., Liu, H., Liu, Y., Li, H. and Zhang, Y. (2019). N, P, S/Fe-codoped carbon derived from feculae bombycis as an efficient electrocatalyst for oxygen reduction reaction. ChemCatChem, 11(24): 6015-6021.

65.   Basri, S. and Kamarudin, S. K. (2018). Nanocatalyst FeN4/C molecular orbital behaviour for oxygen reduction reaction (ORR) in cathode direct methano fuel cell (DMFC). Jurnal Kejuruteraan, 1(2): 59-64.

66.   Jiang, W. J., Gu, L., Li, L., Zhang, Y., Zhang, X., Zhang, L. J. and Wan, L. J. (2016). Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. Journal of the American Chemical Society, 138(10): 3570-3578.

67.   Hossen, M. M., Artyushkova, K., Atanassov, P. and Serov, A. (2018). Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in alkaline exchange membrane fuel cells. Journal of Power Sources, 375: 214-221.

68.   Zhan, Y., Xie, F., Zhang, H., Lin, Z., Huang, J., Zhang, W. and Meng, H. (2018). Non noble metal catalyst for oxygen reduction reaction and its characterization by simulated fuel cell test. Journal of The Electrochemical Society, 165(15): J3008-J3015.

69.   Kim, S., Park, H. and Li, O. L. (2020). Cobalt nanoparticles on plasma-controlled nitrogen-doped carbon as high-performance ORR electrocatalyst for primary Zn-Air battery. Nanomaterials, 10(2): 223.

70.   Zang, J., Wang, F., Cheng, Q., Wang, G., Ma, L., Chen, C. and Yang, H. (2020). Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. Journal of Materials Chemistry A, 8(7): 3686-3691.

71.   Grinberg, V. A., Mayorova, N. A., Pasynskii, A. A., Modestov, A. D., Shiryaev, A. A., Vysotskii, V. V. and Nogai, A. S. (2018). Nanostructured platinum-free catalysts of oxygen reduction based on metal chalcogenide cobalt clusters. Russian Journal of Coordination Chemistry, 44(10): 589-595.

72.   Winey, K. I., Li, J., Doan-Nguyen, V. V. T., Murray, C. B., Su, D., Trigg, E. B. and Agarwal, R. (2015).  Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano, 9(8): 8108-8115.

73.   Zhao, H., Xing, T., Li, L., Geng, X., Guo, K., Sun, C. and An, B. (2019). Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells. International Journal of Hydrogen Energy, 44(46): 25180-25187.

74.   Liang, G., Huang, J., Li, J., Wu, Y., Huang, G., Jin, Y. Q., ... and Meng, H. (2020). Improving the catalytic performance of Co/N/C catalyst for oxygen reduction reaction by alloying with Fe. Journal of The Electrochemical Society, 167(10), 104502.

75.   An, L., Jiang, N., Li, B., Hua, S., Fu, Y., Liu, J. and Sun, Z. (2018). A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. Journal of Materials Chemistry A, 6(14): 5962-5970.

76.   Liu, P., Ran, J., Xia, B., Xi, S., Gao, D. and Wang, J. (2020). Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–Air batteries. Nano-Micro Letters, 12(1), 1–12.

77.   Hao, Y., Xu, Y., Liu, J. and Sun, X. (2017). Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst. Journal of Materials Chemistry A, 5(11): 5594-5600.

78.   Trzes̈niewski, B. J., Diaz-Morales, O., Vermaas, D. A., Longo, A., Bras, W., Koper, M. T. M. and Smith, W. A. (2015). In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. Journal of the American Chemical Society, 137(48): 15112-15121.

79.   Zhuang, Z., Giles, S. A., Zheng, J., Jenness, G. R., Caratzoulas, S., Vlachos, D. G. and Yan, Y. (2016). Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nature Communications, 7: 1–8.

80.   Faubert, P., Kondov, I., Qazzazie, D., Yurchenko, O. and Müller, C. (2018). A non-noble Cr-Ni-based catalyst for the oxygen reduction reaction in alkaline polymer electrolyte fuel cells. MRS Communications, 8(1): 160-167.

81.   Kabir, S., Lemire, K., Artyushkova, K., Roy, A., Odgaard, M., Schlueter, D. and Serov, A. (2017). Platinum group metal-free NiMo hydrogen oxidation catalysts: High performance and durability in alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 5(46): 24433-24443.

82.   Xie, X., Liu, J., Li, T., Song, Y. and Wang, F. (2018). Post-formation copper-nitrogen species on carbon black: their chemical structures and active sites for oxygen reduction reaction. Chemistry - A European Journal, 24(39): 9968-9975.

83.   Hamedi, M., Wigenius, J., Tai, F. I., Björk, P. and Aili, D. (2010). Polypeptide-guided assembly of conducting polymer nanocomposites. Nanoscale, 2(10): 2058-2061.

84.   Kang, Y. S., Heo, Y., Kim, P. and Yoo, S. J. (2017). Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. Journal of Industrial and Engineering Chemistry, 52(3): 35-41.

85.   He, Q., Yang, X., Ren, X., Koel, B. E., Ramaswamy, N., Mukerjee, S. and Kostecki, R. (2011). A novel CuFe-based catalyst for the oxygen reduction reaction in alkaline media. Journal of Power Sources, 196(18): 7404-7410.

86.   86. Qiao, Y., Ni, Y., Kong, F., Li, R., Zhang, C., Kong, A. and Shan, Y. (2019). Pyrolytic carbon-coated Cu-Fe alloy nanoparticles with high catalytic performance for oxygen electroreduction. Chemistry - An Asian Journal, 14(15): 2676-2684.

87.   Cui, L., Cui, L., Li, Z., Zhang, J., Wang, H., Lu, S. and Xiang, Y. (2019). A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. Journal of Materials Chemistry A, 7(28): 16690-16695.

88.   Mosa, I. M., Biswas, S., El-Sawy, A. M., Botu, V., Guild, C., Song, W. and Suib, S. L. (2015). Tunable mesoporous manganese oxide for high performance oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 4(2): 620-631.

89.   Liu, J., Yu, M., Wang, X., Wu, J., Wang, C., Zheng, L. and Wang, W. (2017). Investigation of high oxygen reduction reaction catalytic performance on Mn-based mullite SmMn2O5. Journal of Materials Chemistry A, 5(39): 20922-20931.

90.   Zhang, R., Zhang, J., Ma, F., Wang, W. Y. and Li, R. F. (2014). Preparation of Mn-N-C catalyst and its electrocatalytic activity for the oxygen reduction reaction in alkaline medium. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 42(4): 467-475.

91.   Stoerzinger, K. A., Risch, M., Han, B. and Shao-Horn, Y. (2015). Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catalysis, 5(10): 6021-6031.

92.   Shao, Y., Liu, J., Wang, Y. and Lin, Y. (2009). Novel catalyst support materials for PEM fuel cells: Current status and future prospects. Journal of Materials Chemistry, 19(1): 46-59.

93.   Qin, C., Wang, J., Yang, D., Li, B. and Zhang, C. (2016). Proton exchange membrane fuel cell reversal: A review. Catalysts, 6(12), 197.

94.   Chong, S. T., Lee, T. K., Samad, S., Loh, K. S., Wong, W. Y., Wan Daud, W. R. and Sunarso, J. (2018). Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. International Journal of Hydrogen Energy, 43(16): 7823-7854.

95.   Devrim, Y., Arıca, E. D. and Albostan, A. (2018). Graphene based catalyst supports for high temperature PEM fuel cell application. International Journal of Hydrogen Energy, 43(26): 11820-11829.

96.   Khan, A. S. A., Ahmed, R. and Mirza, M. L. (2010). Performance evaluation of platinum-based catalysts for the development of proton exchange membrane fuel cells. Turkish Journal of Chemistry, 34(2): 193-206.

97.   Choi, S. M., Seo, M. H., Kim, H. J. and Kim, W. B. (2011). Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon, 49(3): 904-909.

98.   Suda, Y., Ozaki, M., Tanoue, H. and Takikawa, H. (2013). Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications. Journal of Physics: Conference Series, 433(1): 012008.

99.   Molina-García, M. A. and Rees, N. V. (2016). Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: A comparative study. RSC Advances, 6(97): 94669-94681.

100.     Esfandiari, A. and Kazemeini, M. (2018). Investigating electrochemical behaviors of Ag@Pt core–shell nanoparticles supported upon different carbon materials acting as PEMFC’s cathodes. Chemical Engineering Transactions, 70: 2161-2166.

101.      Minitha, C. R. and Rajendrakumar, R. T. (2013). Synthesis and characterization of reduced graphene oxide. Advanced Materials Research, 678: 56-60.

102.     Kang, S. Y., Kim, H. J. and Chung, Y. H. (2018). Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction. Nano Convergence, 5(1): 1-15.

103.     Grigoriev, S. A., Fateev, V. N., Pushkarev, A. S., Pushkareva, I. V., Ivanova, N. A. and Kalinichenko, V. N., Wei, X. (2018). Reduced graphene oxide and its modifications as catalyst supports and catalyst layer modifiers for PEMFC. Materials, 11(8): 1405.

104.     Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6(1): 118.

105.     Liu, J., Choi, H. J. and Meng, L. Y. (2018). A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications. Journal of Industrial and Engineering Chemistry, 64: 1-15.

106.     Santoro, C., Serov, A., Stariha, L., Kodali, M., Gordon, J., Babanova, S. and Atanassov, P. (2016). Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells. Energy and Environmental Science, 9(7): 2346-2353.

107.     Soo, L. T., Loh, K. S., Mohamad, A. B., Daud, W. R. W. and Wong, W. Y. (2015). An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells. Applied Catalysis A: General, 497: 198-210.

108.     Xiao, M., Zhu, J., Feng, L., Liu, C. and Xing, W. (2015). Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Advanced Materials, 27(15): 2521-2527.

109.     Liang, Y., Wang, H., Zhou, J., Li, Y., Wang, J., Regier, T. and Dai, H. (2012). Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. Journal of the American Chemical Society, 134(7): 3517-3523.

110.     Choi, H. J., Jung, S. M., Seo, J. M., Chang, D. W., Dai, L. and Baek, J. B. (2012). Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 1(4): 534-551.

111.     Anastasopoulos, A., Blake, J. and Hayden, B. E. (2011). Non-noble intertransition binary metal alloy electrocatalyst for hydrogen oxidation and hydrogen evolution. Journal of Physical Chemistry C, 115(39): 19226-19230.

112.     Osmieri, L. (2019). Transition metal–nitrogen–carbon (M–N–C) catalysts for oxygen reduction reaction. insights on synthesis and performance in polymer electrolyte fuel cells. ChemEngineering, 3(1): 16.

113.     Li, L., Shen, S., Wei, G., Li, X., Yang, K., Feng, Q. and Zhang, J. (2019). A comprehensive investigation on pyrolyzed fe-n-c composites as highly efficient electrocatalyst toward the oxygen reduction reaction of PEMFCs. ACS Applied Materials and Interfaces, 11: 14126-14135.

114.     Chen, Z., Higgins, D., Yu, A., Zhang, L. and Zhang, J. (2011). A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 4(9): 3167-3192.

115.     Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A. and Wu, G. (2019). Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy and Fuels, 4(1): 15-30.

116.     Gautam, J., Huu Tuan, L., Kim, N. H., Van Hien, H., Thanh Tran, D., Lee, J. H. and Dinh Chuong, N. (2018). Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 22: 100-131.

117.     Ansón-Casaos, A., Puértolas, J. A., Pascual, F. J., Hernández-Ferrer, J., Castell, P. and Benito, A. M., Martínez, M. T. (2014). The effect of gamma-irradiation on few-layered graphene materials. Applied Surface Science, 301: 264-272.

118.     He, Y., Li, J., Li, L. and Li, J. (2016). Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel. Materials Letters, 177(1): 76-79.

119.     Abidin, Z., Muhamad, E., Ahmad Daud, N., Ibrahim, N., Chieng, B. and Talib, Z. (2017). Functionalizing graphene oxide with alkylamine by gamma-ray irradiation method. Nanomaterials, 7(6): 135.

120.     Wang, W., Zhao, X., Shi, H., Liu, L., Deng, H., Xu, Z. and Miao, X. (2020). Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. Journal of Colloid and Interface Science, 575: 1-15.

121.     Xu, Z., Chen, L., Zhou, B., Li, Y., Li, B., Niu, J. and Qian, X. (2013). Nano-structure and property transformations of carbon systems under γ-ray irradiation: A review. RSC Advances, 3(27): 10579-10597.

122.      Park, H. Y., Yang, D. S., Bhattacharjya, D., Song, M. Y. and Yu, J. S. (2014). A highly efficient carbon-supported Pt electrocatalyst prepared by γ-irradiation for cathodic oxygen reduction. International Journal of Hydrogen Energy, 39(4): 1688-1697.

123.     Meku, E., Du, C., Wang, Y. and Du, L. (2016). Impact of different synthesis methods on the electrocatalytic activity and stability of Pd-Fe/C nanoparticles for oxygen reduction reaction in fuel cells. 2016 International Conference on Engineering and Technology Innovations: pp. 127-131.

124.     Hung, T. F., Tu, M. H., Tsai, C. W., Chen, C. J., Liu, R. S., Liu, W. R. and Lo, M. Y. (2013). Influence of pyrolysis temperature on oxygen reduction reaction activity of carbon-incorporating iron nitride/nitrogen-doped graphene nanosheets catalyst. International Journal of Hydrogen Energy, 38(10): 3956-3962.

125.     Jeon, M. K. and McGinn, P. J. (2012). Co-alloying effect of Co and Cr with Pt for oxygen electro-reduction reaction. Electrochimica Acta, 64(3): 147-153.

126.     Sharin, S., Rahman, I. A., Ahmad, A. F., Mohd, H. M. K., Mohamed, F., Radiman, S., … and Bastamam, I. S. A. (2015). Penurunan grafin oksida kepada grafin menggunakan sinar gama. Malaysian Journal of Analytical Sciences, 19(6): 1223-1228.

127.     Li, Z., Yang, Y., Relefors, A., Kong, X., Siso, G. M., Wickman, B. and Soroka, I. L. (2021). Tuning morphology, composition and oxygen reduction reaction (ORR) catalytic performance of manganese oxide particles fabricated by γ-radiation induced synthesis. Journal of Colloid and Interface Science, 583: 71-79.

128.     Mashentseva, A. A., Shlimas, D. I., Kozlovskiy, A. L., Zdorovets, M. V., Russakova, A. V., Kassymzhanov, M. and Borisenko, A. N. (2019). Electron beam induced enhancement of the catalytic properties of ion-track membranes supported copper nanotubes in the reaction of the P-nitrophenol reduction. Catalysts, 9(9): 737.

129.     Kakitani, K., Kimata, T., Yamaki, T., Yamamoto, S., Shimoyama, I., Matsumura, D. and Terai, T. (2017). Activity enhancement of platinum nanoparticle catalysts on ion-beam-irradiated carbon support. National Institutes for Quantum and Radiological Science and Technology, 34: 2016-2018.

130.     Nakagawa, N., Ishitobi, H., Abe, S., Kakinuma, M., Koshikawa, H., Yamamoto, S. and Yamaki, T. (2019). A novel method to enhance the catalytic activity of PtRu on the support using CeO2 by high-energy ion-beam irradiation. Catalysis Today, 364: 118-124.

131.     Choi, Y., Lim, D., Oh, E., Lim, C. and Baeck, S. H. (2019). Effect of proton irradiation on electrocatalytic properties of MnO2 for oxygen reduction reaction. Journal of Materials Chemistry A, 7(19): 11659-11664.

132.   Ohkubo, Y., Hamaguchi, Y., Seino, S., Nakagawa, T., Kageyama, S., Kugai, J. and Yamamoto, T. A. (2013). Preparation of carbon-supported PtCo nanoparticle catalysts for the oxygen reduction reaction in polymer electrolyte fuel cells by an electron-beam irradiation reduction method. Journal of Materials Science, 48(14): 5047-5054.