Malaysian
Journal of Analytical Sciences Vol 26 No 3
(2022): 622 - 639
A REVIEW ON PREPARATION,
MODIFICATION AND FUNDAMENTAL PROPERTIES OF SPEEK NANOCOMPOSITE PEM FOR DIRECT
METHANOL FUEL CELL APPLICATIONS
(Satu Ulasan tentang
Penyediaan, Pengubahsuaian dan Ciri Asas Komposit Nano Membran Elektrolit
Polimer SPEEK untuk Aplikasi Sel Bahan Api)
Nor Fatina Raduwan and Norazuwana Shaari*
Fuel
Cell Institute,
Universiti
Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia
*Corresponding
author: norazuwanashaari@ukm.edu.my
Received: 14 December 2021;
Accepted: 3 February 2022; Published: 27
June 2022
Abstract
Various types of promising proton exchange
membrane (PEM) are based on thermoplastics due to their excellent conductivity,
good thermal and chemical stability, high durability as well as low fabrication
and material cost. Sulfonated poly (ether ether ketone) or SPEEK is one of the
examples of thermoplastic polymer that has been sulfonated to enhance its
fundamental properties. These properties can be altered and improved through the
fabrication process and modifications of the membranes. Thus, current
researches on combining SPEEK with other polymers and inorganic particles through
various fabrication methods are discussed in this review. The characterization
of SPEEK-based membrane in terms of its water uptake, methanol permeability, proton
conductivity, thermal and mechanical stability are also included in the
discussion. The impact of membrane modifications on the fundamental properties
and comparison of different membrane preparation methods are addressed. In
addition, the advantages and drawbacks of modified membranes are summarized.
Keywords: SPEEK;
polymer electrolyte membrane; fuel cell
Abstrak
Pelbagai
jenis polimer elektrolit membran yang diyakini adalah daripada termoplastik
disebabkan oleh kekonduksian yang cemerlang, kestabilan terma dan kimia yang
baik, ketahanan yang tinggi dan kos bahan dan pembuatan yang rendah. Poli (eter
eter keton) tersulfonat atau SPEEK adalah satu contoh polimer termoplastik yang
telah disulfonasi untuk mempertingkatkan ciri asas seperti pengambilan air dan
ketertelapan metanol yang rendah, meningkatkan kekonduksian proton dan
mempunyai ketahanan dan kestabilan yang tinggi. Ciri-ciri ini boleh diubahsuai
dan dipertingkat melalui proses fabrikasi dan pengubahsuaian ke atas membran.
Oleh yang demikian, para penyelidik menggabungkan SPEEK dengan polimer jenis
lain dan bahan tak organik melalui pelbagai cara fabrikasi telah dibincangkan
dalam ulasan ini. Kesan daripada pengubahsuaian membrane k etas ciri-ciri
asanya dan perbandingan cara penyediaan membrane turut dibincangkan.
Seterusnya, kelebihan dan kekurangan membran terubahsuai turut diringkaskan.
Kata kunci: SPEEK, membran elektrolit polimer, sel fuel
Graphical Abstract
References
1.
Worldometer.
(2021). Current World Population. Access from
https://www.worldometers.info/world-population/ [Retrieved September 8, 2021]
2.
Haiges,
R., Wang, Y. D., Ghoshray, A. and Roskilly, A. P. (2017). Optimization of
Malaysia’s Power generation mix to meet the electricity demand by 2050. Energy
Procedia, 142: 2844-2851.
3.
Laguna-Bercero,
M. A. (2012). Recent advances in high temperature electrolysis using solid
oxide fuel cells: a review. Journal of Power Sources, 203: 4-16.
4.
Dai, H.,
Jiang, B., Hu, X., Lin, X., Wei, X. and Pecht, M. (2020). Advanced battery
management strategies for a sustainable energy future: multilayer design
concepts and research trends. Renewable and Sustainable Energy Reviews,
8: 110480.
5.
Bahru,
R., Shaari, N. and Mohamed, M. A. (2020). Allotrope carbon materials in thermal
interface materials and fuel cell applications: A review. International
Journal of Energy Research, 44(4): 2471-2498.
6.
Raduwan,
N. F., Muchtar, A., Somalu, M. R., Baharuddin, N. A. and Muhammed Ali, S. A.
(2018). Challenges in fabricating solid oxide fuel cell stacks for portable
applications: A short review. International Journal of Integrated
Engineering, 10(5): 80-86.
7.
Ferriday,
T. B. and Middleton, P. H. (2021). Alkaline fuel cell technology - a review. International
Journal of Hydrogen Energy, 46(35): 18489-18510.
8.
Junoh,
H., Jaafar, J., Mohd Norddin, M. N. A., Ismail, A. F., Othman, M. H. D.,
Rahman, M. A., … and Ilbeygi, H. (2015). A review on the fabrication of
electrospun polymer electrolyte membrane for direct methanol fuel cell. Journal
of Nanomaterials, 4: 4.
9.
Esmaeili,
N., Gray, E. M. A. and Webb, C. J. (2019). Non-fluorinated polymer composite
proton exchange membranes for fuel cell applications – a review. ChemPhysChem,
20(16): 2016-2053.
10.
Asghari,
S., Fouladi, B., Masaeli, N. and Imani, B. F. (2014). Leak diagnosis of polymer
electrolyte membrane fuel cell stacks. International Journal of Hydrogen
Energy, 39(27): 14980-14992.
11.
Wu, H.,
Hou, W., Wang, J., Xiao, L. and Jiang, Z. (2010). Preparation and properties of
hybrid direct methanol fuel cell membranes by embedding organophosphorylated
titania submicrospheres into a chitosan polymer matrix. Journal of Power Sources,
195(13): 4104-4113.
12.
Jiang,
S. P., Liu, Z. and Tian, Z. Q. (2006). Layer-by-layer self-assembly of
composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Advanced
Materials, 18(8): 1068-1072.
13.
Kim, H.
J., Kim, D. Y., Han, H. and Shul, Y. G. (2006). PtRu/C-Au/TiO2
Electrocatalyst for a direct methanol fuel cell. Journal of Power Sources,
159: 484-490.
14.
Taherkhani,
Z., Abdollahi, M., Sharif, A. and Barati, S. (2021). Poly(benzimidazole)/ poly(vinylphosphonic
acid) blend membranes with enhanced performance for high temperature polymer
electrolyte membrane fuel cells. Solid State Ionics, 364: 115635.
15.
Zarrin,
H., Jiang, G., Lam, G. Y. Y., Fowler, M. and Chen, Z. (2014). High performance
porous polybenzimidazole membrane for alkaline fuel cells. International
Journal of Hydrogen Energy, 39(32): 18405-18415.
16.
Herranz,
D., Escudero-Cid, R., Montiel, M., Palacio, C., Fatás, E. and Ocón, P. (2018).
Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high
performance alkaline direct ethanol fuel cells. Renewable Energy, 127:
883-895.
17.
Gao, X.,
Liu, Y. and Li, J. (2015). Review on modification of sulfonated poly
(-ether-ether-ketone) membranes used as proton exchange membranes. Medziagotyra,
21(4): 574-582.
18.
Yee, R.
S. L., Zhang, K. and Ladewig, B. P. (2013). The effects of sulfonated
poly(ether ether ketone) ion exchange preparation conditions on membrane
properties. Membranes, 3(3): 182-195.
19.
Xiang,
Z., Zhao, X., Ge, J., Ma, S., Zhang, Y. and Na, H. (2016). Effect of
sulfonation degree on performance of proton exchange membranes for direct
methanol fuel cells. Chemical Research in Chinese Universities, 32(2):
291-295.
20.
Hasani-Sadrabadi,
M. M., Dashtimoghadam, E., Sarikhani, K., Majedi, F. S. and Khanbabaei, G.
(2010). Electrochemical investigation of sulfonated poly(ether ether
ketone)/clay nanocomposite membranes for moderate temperature fuel cell
applications. Journal of Power Sources, 195(9): 2450-2456.
21.
Chang,
J. H., Park, J. H., Park, G. G., Kim, C. S. and Park, O. O. (2003).
Proton-conducting composite membranes derived from sulfonated hydrocarbon and
inorganic materials. Journal of Power Sources, 124(1): 18-25.
22.
Li, L.,
Zhang, J. and Wang, Y. (2003). Sulfonated Poly(ether ether ketone) membranes
for direct methanol fuel cell. Journal of Membrane Science, 226(1–2):
159-167.
23.
Ata, K.
C., Kadıoğlu, T., Türkmen, A. C., Çelik, C. and Akay, R. G. (2020).
Investigation of the effects of SPEEK and its clay composite membranes on the
performance of direct borohydride fuel cell. International Journal of
Hydrogen Energy, 45(8): 5430-5437.
24.
Rambabu,
G. and Bhat, S. D. (2015). Sulfonated fullerene in SPEEK matrix and its impact
on the membrane electrolyte properties in direct methanol fuel cells. Electrochimica
Acta, 176: 657-669.
25.
Kickelbick,
G. (2003). Concepts for the
incorporation of inorganic building blocks into organic polymers on a nanoscale.
Progress in Polymer Science, 28(1):
83-114.
26.
Peighambardoust,
S. J., Rowshanzamir, S. and Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications.
International Journal of Hydrogen Energy, 35(17): 9349-9384.
27.
Balazs,
A. C., Emrick, T. and Russell, T. P. (2006). Nanoparticle polymer composites:
Where two small worlds meet. Science, 314(5802): 1107-1110.
28.
Zou, H.,
Wu, S. and Shen, J. (2008). Polymer/silica nanocomposites: Preparation,
characterization, propertles, and applications. Chemical Reviews,
108(9): 3893-3957.
29.
Salarizadeh,
P., Bagheri, A., Beydaghi, H. and Hooshyari, K. (2019). Enhanced properties of
SPEEK with incorporating of PFSA and barium strontium titanate nanoparticles
for application in DMFCs. International Journal of Energy Research,
43(9): 4840-4853.
30.
Tripathi,
B. P. and Shahi, V. K. (2011). Organic-inorganic nanocomposite polymer
electrolyte membranes for fuel cell applications. Progress in Polymer
Science (Oxford), 36(7): 945-979.
31.
Wong, C.
Y., Wong, W. Y., Ramya, K., Khalid, M., Loh, K. S., Daud, W. R. W., … and
Kadhum, A. A. H. (2019). Additives in proton exchange membranes for low- and
high-temperature fuel cell applications: A review. International Journal of
Hydrogen Energy, 44(12): 6116-6135.
32.
Rambabu,
G., Bhat, S. D. and Figueiredo, F. M. L. (2019). Carbon nanocomposite membrane
electrolytes for direct methanol fuel cells—a concise review. Nanomaterials,
9(9): 1292.
33.
Taufiq
Musa, M., Shaari, N. and Kamarudin, S. K. (2020). Carbon nanotube, graphene
oxide and montmorillonite as conductive fillers in polymer electrolyte membrane
for fuel cell: An overview. International Journal of Energy Research,
45(2): 1309-1346.
34.
Zhang,
H., Ma, C., Wang, J., Wang, X., Bai, H. and Liu, J. (2014). Enhancement of
proton conductivity of polymer electrolyte membrane enabled by sulfonated
nanotubes. International Journal of Hydrogen Energy, 39(2): 974-986.
35.
Bagheri,
A., Javanbakht, M., Hosseinabadi, P., Beydaghi, H. and Shabanikia, A. (2018).
Preparation and characterization of SPEEK/SPVDF-Co-HFP/LaCrO3
nanocomposite blend membranes for direct methanol fuel cells. Polymer,
138: 275-287.
36.
Ranjani,
M., Al-Sehemi, A. G., Pannipara, M., Aziz, M. A., Phang, S. M., Ng, F. L. and
Kumar, G. G. (2020). SnO2 nanocubes/bentonite modified SPEEK
nanocomposite composite membrane for high performance and durable direct
methanol fuel cells. Solid State Ionics, 353(3): 115318.
37.
Li, P.,
Dang, J., Wu, W., Lin, J., Zhou, Z., Zhang, J. and Wang, J. (2020). Nanofiber
composite membrane using quantum dot hybridized SPEEK nanofiber for efficient
through-plane proton conduction. Journal of Membrane Science, 609(5):
118198.
38.
Shukla,
A., Dhanasekaran, P., Nagaraju, N., Bhat, S. D. and Pillai, V. K. (2019). A facile synthesis of graphene
nanoribbon-quantum dot hybrids and their application for composite electrolyte
membrane in direct methanol fuel cells. Electrochimica Acta, 297:
267-280.
39.
Liu, X.,
Yang, Z., Zhang, Y., Li, C., Dong, J., Liu, Y. and Cheng, H. (2017).
Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication
of SPEEK composite proton exchange membranes for direct methanol fuel cell
application. International Journal of Hydrogen Energy, 42(15):
10275-10284.
40.
Sahin,
A. (2018). The development of SPEEK/PVA/TEOS blend membrane for proton exchange
membrane fuel cells. Electrochimica Acta, 271, 127–136.
41.
Jiang,
Z., Zhao, X. and Manthiram, A. (2013). Sulfonated poly(ether ether ketone)
membranes with sulfonated graphene oxide fillers for direct methanol fuel
cells. International Journal of Hydrogen Energy, 38(14):
5875-5884.
42.
Gong,
C., Zheng, X., Liu, H., Wang, G., Cheng, F., Zheng, G., … and Tang, C. Y.
(2016). A new strategy for designing high-performance sulfonated poly(ether
ether ketone) polymer electrolyte membranes using inorganic proton
conductor-functionalized carbon nanotubes. Journal of Power Sources,
325: 453-464.
43.
Awang,
N., Jaafar, J. and Ismail, A. F. (2018). Thermal stability and water content
study of void-free electrospun SPEEK/cloisite membrane for direct methanol fuel
cell application. Polymers, 10(2): 1-15.
44.
Yamaguchi,
T., Miyata, F. and Nakao, S. I. (2003). Pore-filling type polymer electrolyte
membranes for a direct methanol fuel cell. Journal of Membrane Science,
214(2): 283-292.
45.
Salleh,
M. T., Jaafar, J., Mohamed, M. A., Norddin, M. N. A. M., Ismail, A. F., Othman,
M. H. D., … and Salleh, W. N. W. (2017). Stability of SPEEK/Cloisite®/TAP
nanocomposite membrane under fenton reagent condition for direct methanol fuel
cell application. Polymer Degradation and Stability, 137: 83-99.
46.
Mollá,
S., Compañ, V., Lafuente, S. L. and Prats, J. (2011). On the methanol
permeability through pristine Nafion® and /PVA membranes measured by different
techniques. A comparison of methodologies. Fuel Cells, 11(6): 897-906.
47.
Roy, T.,
Wanchoo, S. K. and Pal, K. (2020). Novel sulfonated poly (ether ether
ketone)/rGNOR@TiO2 nanohybrid membrane for proton exchange membrane
fuel cells. Solid State Ionics, 349: 115296.