Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 622 - 639

 

 

 

 

 

A REVIEW ON PREPARATION, MODIFICATION AND FUNDAMENTAL PROPERTIES OF SPEEK NANOCOMPOSITE PEM FOR DIRECT METHANOL FUEL CELL APPLICATIONS

 

(Satu Ulasan tentang Penyediaan, Pengubahsuaian dan Ciri Asas Komposit Nano Membran Elektrolit Polimer SPEEK untuk Aplikasi Sel Bahan Api)

 

Nor Fatina Raduwan and Norazuwana Shaari*

 

Fuel Cell Institute,

Universiti Kebangsaan Malaysia, Bangi, 43600 Selangor, Malaysia

 

*Corresponding author:  norazuwanashaari@ukm.edu.my

 

 

Received: 14 December 2021; Accepted: 3 February 2022; Published:  27 June 2022 

 

 

Abstract

Various types of promising proton exchange membrane (PEM) are based on thermoplastics due to their excellent conductivity, good thermal and chemical stability, high durability as well as low fabrication and material cost. Sulfonated poly (ether ether ketone) or SPEEK is one of the examples of thermoplastic polymer that has been sulfonated to enhance its fundamental properties. These properties can be altered and improved through the fabrication process and modifications of the membranes. Thus, current researches on combining SPEEK with other polymers and inorganic particles through various fabrication methods are discussed in this review. The characterization of SPEEK-based membrane in terms of its water uptake, methanol permeability, proton conductivity, thermal and mechanical stability are also included in the discussion. The impact of membrane modifications on the fundamental properties and comparison of different membrane preparation methods are addressed. In addition, the advantages and drawbacks of modified membranes are summarized.

 

Keywords:  SPEEK; polymer electrolyte membrane; fuel cell

 

Abstrak

Pelbagai jenis polimer elektrolit membran yang diyakini adalah daripada termoplastik disebabkan oleh kekonduksian yang cemerlang, kestabilan terma dan kimia yang baik, ketahanan yang tinggi dan kos bahan dan pembuatan yang rendah. Poli (eter eter keton) tersulfonat atau SPEEK adalah satu contoh polimer termoplastik yang telah disulfonasi untuk mempertingkatkan ciri asas seperti pengambilan air dan ketertelapan metanol yang rendah, meningkatkan kekonduksian proton dan mempunyai ketahanan dan kestabilan yang tinggi. Ciri-ciri ini boleh diubahsuai dan dipertingkat melalui proses fabrikasi dan pengubahsuaian ke atas membran. Oleh yang demikian, para penyelidik menggabungkan SPEEK dengan polimer jenis lain dan bahan tak organik melalui pelbagai cara fabrikasi telah dibincangkan dalam ulasan ini. Kesan daripada pengubahsuaian membrane k etas ciri-ciri asanya dan perbandingan cara penyediaan membrane turut dibincangkan. Seterusnya, kelebihan dan kekurangan membran terubahsuai turut diringkaskan.

 

Kata kunci:  SPEEK, membran elektrolit polimer, sel fuel

 

 


Graphical Abstract


 

 

References

1.      Worldometer. (2021). Current World Population. Access from https://www.worldometers.info/world-population/ [Retrieved September 8, 2021]

2.      Haiges, R., Wang, Y. D., Ghoshray, A. and Roskilly, A. P. (2017). Optimization of Malaysia’s Power generation mix to meet the electricity demand by 2050. Energy Procedia, 142: 2844-2851.

3.      Laguna-Bercero, M. A. (2012). Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 203: 4-16.

4.      Dai, H., Jiang, B., Hu, X., Lin, X., Wei, X. and Pecht, M. (2020). Advanced battery management strategies for a sustainable energy future: multilayer design concepts and research trends. Renewable and Sustainable Energy Reviews, 8: 110480.

5.      Bahru, R., Shaari, N. and Mohamed, M. A. (2020). Allotrope carbon materials in thermal interface materials and fuel cell applications: A review. International Journal of Energy Research, 44(4): 2471-2498.

6.      Raduwan, N. F., Muchtar, A., Somalu, M. R., Baharuddin, N. A. and Muhammed Ali, S. A. (2018). Challenges in fabricating solid oxide fuel cell stacks for portable applications: A short review. International Journal of Integrated Engineering, 10(5): 80-86.

7.      Ferriday, T. B. and Middleton, P. H. (2021). Alkaline fuel cell technology - a review. International Journal of Hydrogen Energy, 46(35): 18489-18510.

8.      Junoh, H., Jaafar, J., Mohd Norddin, M. N. A., Ismail, A. F., Othman, M. H. D., Rahman, M. A., … and Ilbeygi, H. (2015). A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell. Journal of Nanomaterials, 4: 4.

9.      Esmaeili, N., Gray, E. M. A. and Webb, C. J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications – a review. ChemPhysChem, 20(16): 2016-2053.

10.   Asghari, S., Fouladi, B., Masaeli, N. and Imani, B. F. (2014). Leak diagnosis of polymer electrolyte membrane fuel cell stacks. International Journal of Hydrogen Energy, 39(27): 14980-14992.

11.   Wu, H., Hou, W., Wang, J., Xiao, L. and Jiang, Z. (2010). Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. Journal of Power Sources, 195(13): 4104-4113.

12.   Jiang, S. P., Liu, Z. and Tian, Z. Q. (2006). Layer-by-layer self-assembly of composite polyelectrolyte-nafion membranes for direct methanol fuel cells. Advanced Materials, 18(8): 1068-1072.

13.   Kim, H. J., Kim, D. Y., Han, H. and Shul, Y. G. (2006). PtRu/C-Au/TiO2 Electrocatalyst for a direct methanol fuel cell. Journal of Power Sources, 159: 484-490.

14.   Taherkhani, Z., Abdollahi, M., Sharif, A. and Barati, S. (2021). Poly(benzimidazole)/ poly(vinylphosphonic acid) blend membranes with enhanced performance for high temperature polymer electrolyte membrane fuel cells. Solid State Ionics, 364: 115635.

15.   Zarrin, H., Jiang, G., Lam, G. Y. Y., Fowler, M. and Chen, Z. (2014). High performance porous polybenzimidazole membrane for alkaline fuel cells. International Journal of Hydrogen Energy, 39(32): 18405-18415.

16.   Herranz, D., Escudero-Cid, R., Montiel, M., Palacio, C., Fatás, E. and Ocón, P. (2018). Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells. Renewable Energy, 127: 883-895.

17.   Gao, X., Liu, Y. and Li, J. (2015). Review on modification of sulfonated poly (-ether-ether-ketone) membranes used as proton exchange membranes. Medziagotyra, 21(4): 574-582.

18.   Yee, R. S. L., Zhang, K. and Ladewig, B. P. (2013). The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties. Membranes, 3(3): 182-195.

19.   Xiang, Z., Zhao, X., Ge, J., Ma, S., Zhang, Y. and Na, H. (2016). Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells. Chemical Research in Chinese Universities, 32(2): 291-295.

20.   Hasani-Sadrabadi, M. M., Dashtimoghadam, E., Sarikhani, K., Majedi, F. S. and Khanbabaei, G. (2010). Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications. Journal of Power Sources, 195(9): 2450-2456.

21.   Chang, J. H., Park, J. H., Park, G. G., Kim, C. S. and Park, O. O. (2003). Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. Journal of Power Sources, 124(1): 18-25.

22.   Li, L., Zhang, J. and Wang, Y. (2003). Sulfonated Poly(ether ether ketone) membranes for direct methanol fuel cell. Journal of Membrane Science, 226(1–2): 159-167.

23.   Ata, K. C., Kadıoğlu, T., Türkmen, A. C., Çelik, C. and Akay, R. G. (2020). Investigation of the effects of SPEEK and its clay composite membranes on the performance of direct borohydride fuel cell. International Journal of Hydrogen Energy, 45(8): 5430-5437.

24.   Rambabu, G. and Bhat, S. D. (2015). Sulfonated fullerene in SPEEK matrix and its impact on the membrane electrolyte properties in direct methanol fuel cells. Electrochimica Acta, 176: 657-669.

25.   Kickelbick, G. (2003). Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Progress in Polymer Science, 28(1): 83-114.

26.   Peighambardoust, S. J., Rowshanzamir, S. and Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17): 9349-9384.

27.   Balazs, A. C., Emrick, T. and Russell, T. P. (2006). Nanoparticle polymer composites: Where two small worlds meet. Science, 314(5802): 1107-1110.

28.   Zou, H., Wu, S. and Shen, J. (2008). Polymer/silica nanocomposites: Preparation, characterization, propertles, and applications. Chemical Reviews, 108(9): 3893-3957.

29.   Salarizadeh, P., Bagheri, A., Beydaghi, H. and Hooshyari, K. (2019). Enhanced properties of SPEEK with incorporating of PFSA and barium strontium titanate nanoparticles for application in DMFCs. International Journal of Energy Research, 43(9): 4840-4853.

30.   Tripathi, B. P. and Shahi, V. K. (2011). Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science (Oxford), 36(7): 945-979.

31.   Wong, C. Y., Wong, W. Y., Ramya, K., Khalid, M., Loh, K. S., Daud, W. R. W., … and Kadhum, A. A. H. (2019). Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. International Journal of Hydrogen Energy, 44(12): 6116-6135.

32.   Rambabu, G., Bhat, S. D. and Figueiredo, F. M. L. (2019). Carbon nanocomposite membrane electrolytes for direct methanol fuel cells—a concise review. Nanomaterials, 9(9): 1292.

33.   Taufiq Musa, M., Shaari, N. and Kamarudin, S. K. (2020). Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: An overview. International Journal of Energy Research, 45(2): 1309-1346.

34.   Zhang, H., Ma, C., Wang, J., Wang, X., Bai, H. and Liu, J. (2014). Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes. International Journal of Hydrogen Energy, 39(2): 974-986.

35.   Bagheri, A., Javanbakht, M., Hosseinabadi, P., Beydaghi, H. and Shabanikia, A. (2018). Preparation and characterization of SPEEK/SPVDF-Co-HFP/LaCrO3 nanocomposite blend membranes for direct methanol fuel cells. Polymer, 138: 275-287.

36.   Ranjani, M., Al-Sehemi, A. G., Pannipara, M., Aziz, M. A., Phang, S. M., Ng, F. L. and Kumar, G. G. (2020). SnO2 nanocubes/bentonite modified SPEEK nanocomposite composite membrane for high performance and durable direct methanol fuel cells. Solid State Ionics, 353(3): 115318.

37.   Li, P., Dang, J., Wu, W., Lin, J., Zhou, Z., Zhang, J. and Wang, J. (2020). Nanofiber composite membrane using quantum dot hybridized SPEEK nanofiber for efficient through-plane proton conduction. Journal of Membrane Science, 609(5): 118198.

38.   Shukla, A., Dhanasekaran, P., Nagaraju, N., Bhat, S. D. and Pillai, V. K. (2019). A facile synthesis of graphene nanoribbon-quantum dot hybrids and their application for composite electrolyte membrane in direct methanol fuel cells. Electrochimica Acta, 297: 267-280.

39.   Liu, X., Yang, Z., Zhang, Y., Li, C., Dong, J., Liu, Y. and Cheng, H. (2017). Electrospun multifunctional sulfonated carbon nanofibers for design and fabrication of SPEEK composite proton exchange membranes for direct methanol fuel cell application. International Journal of Hydrogen Energy, 42(15): 10275-10284.

40.   Sahin, A. (2018). The development of SPEEK/PVA/TEOS blend membrane for proton exchange membrane fuel cells. Electrochimica Acta, 271, 127–136.

41.   Jiang, Z., Zhao, X. and Manthiram, A. (2013). Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells. International Journal of Hydrogen Energy, 38(14): 5875-5884.

42.   Gong, C., Zheng, X., Liu, H., Wang, G., Cheng, F., Zheng, G., … and Tang, C. Y. (2016). A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. Journal of Power Sources, 325: 453-464.

43.   Awang, N., Jaafar, J. and Ismail, A. F. (2018). Thermal stability and water content study of void-free electrospun SPEEK/cloisite membrane for direct methanol fuel cell application. Polymers, 10(2): 1-15.

44.   Yamaguchi, T., Miyata, F. and Nakao, S. I. (2003). Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. Journal of Membrane Science, 214(2): 283-292.

45.   Salleh, M. T., Jaafar, J., Mohamed, M. A., Norddin, M. N. A. M., Ismail, A. F., Othman, M. H. D., … and Salleh, W. N. W. (2017). Stability of SPEEK/Cloisite®/TAP nanocomposite membrane under fenton reagent condition for direct methanol fuel cell application. Polymer Degradation and Stability, 137: 83-99.

46.   Mollá, S., Compañ, V., Lafuente, S. L. and Prats, J. (2011). On the methanol permeability through pristine Nafion® and /PVA membranes measured by different techniques. A comparison of methodologies. Fuel Cells, 11(6): 897-906.

47.   Roy, T., Wanchoo, S. K. and Pal, K. (2020). Novel sulfonated poly (ether ether ketone)/rGNOR@TiO2 nanohybrid membrane for proton exchange membrane fuel cells. Solid State Ionics, 349: 115296.