Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 613 - 621

 

 

 

 

PtRu SUPPORTED ON POROUS 3D TITANIUM DIOXIDE-GRAPHENE AEROGEL AS A POTENTIAL ELECTROCATALYST FOR DIRECT METHANOL FUEL CELLS

 

(PtRu disokong pada 3D Titanium Dioksida-Grafin Aerogel Berliang Sebagai Potensi Elektromangkin untuk Sel Bahan Bakar Metanol Langsung)

 

Siti Hasanah Osman1*, Siti Kartom Kamarudin1,2, Sahriah Basri1, Nabila A.Karim1

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  ctie@ukm.edu.my

 

 

Received: 9 November 2021; Accepted: 27 February 2022; Published:  27 June 2022 

 

 

Abstract

The catalyst support is typically implemented to improve the catalytic activity in direct methanol fuel cells (DMFCs). Thus, this study focused on the novel support of 3D hierarchical porous TiO2-graphene aerogel which was established via a combination of hydrothermal method and freezing drying method. XRD, Raman spectra, and FESEM were used to study the PtRu/TiO2-GA. The estimated particle size of PtRu/TiO2-GA determined from the XRD analysis was less than composite TiO2-GA. The existence of the carbon support material was confirmed by the Raman spectra in all generated samples. Within the electrocatalyst and TiO2-GA, the ratio value of the D band to the G band (ID/IG) was not significantly different. The computed ID/IG values for TiO2-GA and PtRu/TiO2-GA electrocatalysts were 0.99 and 1.02, respectively. The best TiO2-GA was doped with PtRu catalyst for the electrochemical test and DMFC performance based on FESEM characterization. PtRu/ TiO2-GA exhibited better electrocatalytic activity, as well as improved PtRu usage efficiency stability and methanol oxidation reaction. Notably, the ECSA value was around 76.01 m2g-1, and the mass activity (957.15 mAmg-1) was higher than commercial with the same loading (20%) PtRu/C (110.79 mAmg-1). Interestingly after the 2000s, the current density of PtRu/TiO2-GA was consistently higher than that of PtRu/C. The superior electrocatalytic performance of PtRu/TiO2-GA towards methanol oxidation demonstrates its use in practical application as a promising anode material for DMFCs

 

Keywords:   3D titanium dioxide-graphene aerogel, platinum-ruthenium nanoparticles, electrocatalysis, methanol electro-oxidation

 

Abstrak

Sokongan mangkin biasanya dilaksanakan untuk meningkatkan aktiviti pemangkin dalam sel bahan api metanol langsung (SFML). Oleh itu, kajian ini memberi tumpuan kepada novel sokongan pada TiO2-grafin aerogel berliang hierarki 3D telah ditubuhkan dengan gabungan kaedah hidroterma dan kaedah pengeringan beku. XRD, spektrum Raman dan FESEM digunakan untuk mengkaji PtRu/TiO2-GA. Anggaran saiz zarah PtRu/TiO2-GA yang ditentukan daripada analisis XRD adalah kurang daripada komposit TiO2-GA. Kewujudan bahan sokongan karbon telah disahkan oleh spektrum Raman dalam semua sampel yang dihasilkan.  Dalam  elektromangkin  dan TiO2-GA,  nilai  nisbah jalur D kepada jalur G (ID/IG) tidak berbeza dengan ketara. Nila ID/IG yang dikira untuk elektromangkin TiO2-GA dan PtRu/TiO2-GA ialah 0.99 dan 1.02, masing-masing. TiO2-GA terbaik akan didop dengan mangkin PtRu untuk ujian elektrokimia dan prestasi SFML berdasarkan pencirian FESEM. PtRu/ TiO2-GA mempamerkan aktiviti elektrokatalitik yang lebih baik, serta peningkatan kestabilan kecekapan penggunaan PtRu dan tindak balas pengoksidaan metanol. Terutama, nilai ECSA adalah sekitar 76.01 m2g-1, aktiviti jisim (957.15 mAmg-1) adalah lebih tinggi daripada komersial dengan pemuatan yang sama (20%) PtRu/C (110.79 mAmg-1). Menariknya selepas minit ke-2000 saat, ketumpatan semasa PtRu/TiO2-GA sentiasa lebih tinggi daripada PtRu/C. Prestasi elektrokatalitik unggul PtRu/TiO2-GA terhadap pengoksidaan metanol boleh digunakan dalam aplikasi praktikal sebagai bahan anod yang menjanjikan untuk DMFC.

 

Kata kunci: 3D titanium dioksida-grafin aerogel, nanopartikel platinum-ruthenium, elektromangkin, elektro-pengoksidaan metanol

 

 


Graphical Abstract

 

 

References

1.      Rashidi, R., Dincer, I., Naterer, G. F. and Berg, P. (2009). Performance evaluation of direct methanol fuel cells for portable applications. Journal of Power Sources, 187(2): 509-516.

2.      Achmad, F., Kamarudin, S. K., Daud, W. R. W. and Majlan, E. H. (2011). Passive direct methanol fuel cells for portable electronic devices. Applied Energy, 88(5): 1681-1689.

3.      Zhao, L., Wang, Z. B., Li, J. L., Zhang, J. J., Sui, X. L. and Zhang, L. M. (2016). Hybrid of carbon-supported Pt nanoparticles and three dimensional graphene aerogel as high stable electrocatalyst for methanol electrooxidation. Electrochimica Acta, 189: 175-183.

4.      Bock, C., Paquet, C., Couillard, M., Botton, G. A. and MacDougall, B. R. (2004). Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. Journal of the American Chemical Society, 126(25): 8028-8037.

5.      Zhang, X., Ma, J., Yan, R., Cheng, W., Zheng, J. and Jin, B. (2021). Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation. Journal of Alloys and Compounds, 867: 159017.

6.      Li, W., Wang, Q., Wang, L., Fu, X. Z. and Luo, J. L. (2021). Mesoporous CeO2–C hybrid spheres as efficient support for platinum nanoparticles towards methanol electrocatalytic oxidation. Journal of Rare Earths, 39(6): 674-681.

7.      Yang, Y., Guo, Y. F., Fu, C., Zhang, R. H., Zhan, W., Wang, P., ... & Zhou, X. W. (2021). In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction. Journal of Colloid and Interface Science, 595: 107-117.

8.      Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A. and Wu, G. (2020). Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels, 4(1): 15-30.

9.      Karuppanan, K. K., Raghu, A. V., Panthalingal, M. K., Thiruvenkatam, V., Karthikeyan, P. and Pullithadathil, B. (2019). 3D-porous electrocatalytic foam based on Pt@ N-doped graphene for high performance and durable polymer electrolyte membrane fuel cells. Sustainable Energy & Fuels, 3(4): 996-1011.

10.   Gorgolis, G. and Galiotis, C. (2017). Graphene aerogels: a review. 2D Materials, 4(3): 032001.

11.   Mao, J., Iocozzia, J., Huang, J., Meng, K., Lai, Y. and Lin, Z. (2018). Graphene aerogels for efficient energy storage and conversion. Energy & Environmental Science, 11(4): 772-799.

12.   Siwińska-Stefańska, K. and Jesionowski, T. (2017). Advanced hybrid materials based on titanium dioxide for environmental and electrochemical applications. In Titanium Dioxide. IntechOpen.

13.   Odling, G. and Robertson, N. (2015). Why is anatase a better photocatalyst than rutile? The importance of free hydroxyl radicals. ChemSusChem, 8(11): 1838-1840.

14.   Dey, S. and Mehta, N. S. (2020). Synthesis and applications of titanium oxide catalysts for lower temperature CO oxidation. Current Research in Green and Sustainable Chemistry, 3: 10002.

15.   Bagheri, S., Muhd Julkapli, N. and Bee Abd Hamid, S. (2014). Titanium dioxide as a catalyst support in heterogeneous catalysis. The Scientific World Journal, 2014: 727496.

16.   Abdullah, N., Kamarudin, S. K. and Shyuan, L. K. (2018). Novel anodic catalyst support for direct methanol fuel cell: characterizations and single-cell performances. Nanoscale Research Letters, 13(1): 1-13.

17.   Ito, Y., Takeuchi, T., Tsujiguchi, T., Abdelkareem, M. A. and Nakagawa, N. (2013). Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support. Journal of Power Sources, 242: 280-288.

18.   Ercelik, M., Ozden, A., Seker, E. and Colpan, C. O. (2017). Characterization and performance evaluation of PtRu/CTiO2 anode electrocatalyst for DMFC applications. International Journal of Hydrogen Energy, 42(33): 21518-21529.

19.   Liu, R., Guo, W., Sun, B., Pang, J., Pei, M. and Zhou, G. (2015). Composites of rutile TiO2 nanorods loaded on graphene oxide nanosheet with enhanced electrochemical performance. Electrochimica Acta, 156: 274-282.

20.   Xiang, C., Guo, R., Lan, J., Jiang, S., Wang, C., Du, Z. and Cheng, C. (2018). Self-assembling porous 3D titanium dioxide-reduced graphene oxide aerogel for the tunable absorption of oleic acid and RhodamineB dye. Journal of Alloys and Compounds, 735: 246-252.

21.   Cordero-Borboa, A. E., Sterling-Black, E., Gómez-Cortés, A. and Vázquez-Zavala, A. (2003). X-ray diffraction evidence of the single solid solution character of bi-metallic Pt-Pd catalyst particles on an amorphous SiO2 substrate. Applied Surface Science, 220(1-4): 169-174.

22.   Vorokh, A. S. (2018). Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystem Physics Chemistry Mathematics, pp. 364-369.

23.   Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Yue, W., SonBinh, T. N., and Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7): 1558-1565.

24.   Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R. and Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 22(35): 3906-3924.

25.   Li, Y., Cai, Q., Wang, L., Li, Q., Peng, X., Gao, B., … and Chu, P. K. (2016). Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium–sulfur batteries. ACS Applied Materials & Interfaces, 8(36): 23784-23792.

26.   Norilhamiah, Y., Kamaruddin, S. K., Karim, N. A.,  Masdar, M. S. and Loh, K. S. (2017). Gliserol, P. E. (2017). Preliminary study on pd-based binary catalysts supported with carbon nanofiber for the electrooxidation of glycerol. Malaysian Journal of Analytical Sciences, 21(3): 700-708.

27.   Ibrahim, S. A., Anwar, M. K., Ainuddin, A. R., Hariri, A., Rus, A. Z. M., Kamdi, Z., Yunos, M. Z., and Harun, Z. (2019). Synthesis and characterization of visible light active Fe-TiO2 using hydrothermal method. International Journal of Integrated Engineering, 11(5): 80-85.

28.   Shaari, N. and Kamarudin, S. K. (2019). Current status, opportunities, and challenges in fuel cell catalytic application of aerogels. International Journal of Energy Research, 43(7): 2447-2467.

29.   Basri, S., Kamarudin, S. K., Daud, W. R. W., Yaakob, Z. and Kadhum, A. A. H. (2014). Novel anode catalyst for direct methanol fuel cells. The Scientific World Journal, 2014: 547604.

30.   Ramli, Z. A., Kamarudin, S. K., Basri, S. and Zainoodin, A. M. (2020). The potential of novel carbon nanocages as a carbon support for an enhanced methanol electro - oxidation reaction in a direct methanol fuel cell. International Journal of Energy Research, 44(13): 10071-10086.