Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 600 - 612

 

 

 

 

FORMULATION AND CHARACTERISATION OF LSCF/YSZ-SDC AND LSCF/YSZ-SDCC DUAL COMPOSITE CATHODES FOR INTERMEDIATE-TEMPERATURE SOLID OXIDE FUEL CELL

 

(Formulasi dan Ciri Dwi-Komposit Katod LSCF/YSZ-SDC dan LSCF/YSZ-SDC Karbonat untuk Sel Bahan Api Oksida Pepejal Bersuhu Pertengahan)

 

Nurul Farhana Abdul Rahman, Umira Asyikin Yusop, Yohannes Nyambong Lowrance, Hamimah Abd. Rahman*, Mohd Azham Azmi, Shahruddin Mahzan, Azzura Ismail

 

Faculty of Mechanical and Manufacturing Engineering,

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

 

*Corresponding author:  hamimah@uthm.edu.my

 

 

Received: 28 November 2021; Accepted: 27 February 2022; Published:  27 June 2022

 

 

Abstract

A cathode component solid oxide fuel cell (SOFC) is important in the manufacturing of the cells. This study evaluated two dual composite cathodes, namely, (La0.6Sr0.4)0.97Co0.2Fe0.8O3 (LSCF)/Y0.8Zr0.92O1.96 (YSZ)-Sm0.2Ce0.8O1.9 (SDC) and LSCF/YSZ-SDC carbonate (SDCC). The dual composite cathodes with different compositions were developed through high-energy ball milling (HEBM) for the production of dual composite powder and screen-printing method for the fabrication of symmetrical cells. The properties of the dual composite cathodes were studied. Phase identification was carried out via X-ray diffractometry (XRD), and the electrochemical performance of the symmetrical cells was measured by impedance test. The physical morphologies of LSCF/YSZ-SDC and LSCF/YSZ-SDCC were slightly different. The XRD patterns of the LSCF/YSZ-SDC cathode powder showed no secondary peak, whereas the LSCF/YSZ-SDCC cathode powder had SrCO3 as an impurity. Microstructure and powder homogeneity are considered essential in addition to the good formulation of the dual composite’s cathodes. The particle sizes of LSCF/YSZ-SDC and LSCF/YSZ-SDCC as analyzed by ImageJ software were in the range of 130–160 nm. The printed cathode was investigated under heat treatment from 700 °C to 500 °C. The electrochemical performance of LSCF/YSZ-SDCC was slightly better compared with that of LSCF/YSZ-SDC because of the addition of the carbonate; however, the polarization resistance obtained did not meet the standard range. The electrochemical performance obtained from this study was not favorable because of severe problems, such as the technique applied during cell fabrication and the presence of impurity after the HEBM process.

 

Keywords:  dual composite cathodes, intermediate temperature, screen printing, solid oxide fuel cell

 

Abstrak

Komponen katod untuk sel bahan api oksida pepejal (SOFC) adalah penting dalam pembuatan sel. Dalam kajian ini, penilaian katod komposit dwi (LSCF)/(YSZ)-(SDC) and (LSCF)/(YSZ)-Karbonat (SDCC) dibentangkan. Komposisi yang berbeza bagi katod komposit dwi telah dibangunkan melalui teknik pengisaran bebola tenaga tinggi untuk penghasilan serbuk komposit dwi dan kaedah percetakan skrin telah digunakan untuk fabrikasi sel simetri. Pencirian sifat katod komposit dwi telah dikaji. Pengenalpastian fasa melalui kaedah pembelauan sinaran-X telah dijalankan dan prestasi electrokimia sel simetri diukur dengan menggunakan ujian impedans. Perbandingan antara morfologi fizikal LSCF/YSZ-SDC and LSCF/YSZ-SDCC menunjukkan sedikit perbezaan dengan penambahan karbonat. Corak sinar-X untuk komposit dwi campuran LSCF/YSZ-SDC katod serbuk tidak memaparkan puncak sekunder. Bagaimanapun, Komposit dwi campuran LSCF/YSZ-SDCC katod serbuk memaparkan kehadiran sebagai bendasing. Kehomogenan struktur mikro dan serbuk dianggap pentiing sebagai tambahan kepada perumusan katod dwi komposit yang baik. Purata saiz zarah purata bagi LSCF/YSZ-SDC and LSCF/YSZ-SDCC dwi komposit selepas dianalisis oleh perisian Image J didedahkan berada dalam julat antara 130-160. Filem bercetak katod telah disiasat di bawah suhu rawatan haba dari 700  hingga 500 . Prestasi elektrokimia LSCF/YSZ-SDCC menunjukkan lebih baik sedikit berbanding LSCF/YSZ-SDC kerana penambahan karbonat namun keputusan yang diperoolehi tidak mencapai julat piawai rintangan polarisasi. Prestasi elektokimia yang diperoleh daripada kajian ini adalah tidak memberangsangkan kerana masalah yang teruk seperti teknik yang digunakan semasa fabrikasi sel dan kehadiran bendasing selepas proses HEBM.

 

Kata kunci:  katod komposit dwi, suhu pertengahan, percetakan skrin, sel bahan api oksida pepejal

 

 


Graphical Abstract


 

 

References

1.      Udomsilp, D., Thaler, F., Menzler, N. H., Bischof, C., de Haart, L. G. J., Opitz, A. K. and Bram, M.(2019). Dual-phase cathodes for metal-supported solid oxide fuel cells: Processing performance, durability. Journal of the Electrochemical Society, 166(8): F506.

2.      Rahman, N. F. A., Rahman, H. A and Azmi, M. A. (2021). Perovskite-type oxide-based dual composite cathode for solid oxide fuel cells: A short review. Solid State Phenomena, 317: 417-425.        

3.      Ko, H. J., Myung, J. H., Hyun, S. H. and Chung, J. S. (2012). Synthesis of LSM–YSZ–GDC dual composite SOFC cathodes for high-performance power-generation systems. Journal of Applied Electrochemistry, 42(4): 209-215.

4.      Ko, H. J., Myung, J. H., Lee, J. H., Hyun, S. H. and Chung, J. S. (2012). Synthesis and evaluation of (  (LSCF)-  (YSZ)-  (GDC) dual composite SOFC cathodes for high performance and durability. International Journal of Hydrogen Energy, 37(22): 17209-17216.

5.      Railsback, J., Choi, S. H. and Barnett, S. A. (2019). Effectiveness of dense Gd-doped ceria barrier layers for (La,Sr)(Co,Fe)  cathodes on Yttria-stabilized zirconia electrolytes. Solid State Ionics, 335: 74-81.

6.      Fergus, J., Hui, R., Li, X., Wilkinson, D. P and Zhang, J. (2016). Solid oxide fuel cells: Materials properties and performance. CRC press.

7.      Rahman, H. A., Ng, K. H., Ahmad, S., Taib, H., Mahzan, S., Salleh, S. M. and Muchtar, A. (2019, March). Influence of microstructure on the electrochemical behaviour of LSCF-SDCC. In IOP Conference Series: Materials Science and Engineering, 494(1): 012062.

8.      Mohammad, S. F., Ahmad, S., Rahman, H. A. and Muchtar, A. (2019). Effect of SSC Loading on the microstructural stability SSC-SDCC composite cathode as new potential SOFC. International Journal of Integrated Engineering, 11(7): 162-168.

9.      Somalu, M. R., Muchtar, A., Daud, W. R. W. and Brandon, N. P. (2017). Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75: 426-439.

10.   Huang, J., Gao, Z. and Mao, Z. (2010). Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. International Journal of Hydrogen Energy, 35(9): 4270-4275.

11.   Abd Rahman, H., Agun, L., Hoa, N. K., Ahmad, S. and Nordin, N. A. (2020). Effects of binary (lithium/natrium  carbonates on the phase and microstructural stability of LSCF-SDC for low temperature solid oxide fuel cells. Sains Malaysiana, 49(12): 3155-3167.

12.   Mohammad, S. F., Ahmad, S., Rahman, H. A. and Muchtar, A. (2019). Effect of SSC loading on the microstructural stability SSC-SDCC composite cathode as new potential SOFC. International Journal of Integrated Engineering, 11(7): 162-168.

13.   Ghasdi, M. and Alamdari, H. (2010). CO sensitive nanocrystalline  perovskite sensor prepared by high energy ball milling. Sensors and Actuators B: Chemical, 148(2): 478-485.

14.   Baharuddin, N. A., Abd Rahman, H., Muchtar, A., Sulong, A. B. and Abdullah, H. (2013). Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate-to low-temperature solid oxide fuel cells. Journal of Zhejiang University Science A, 14(1): 11-24.

15.   Gao, D., Zhao, J., Zhou, W., Ran, R. and Shao, Z. (2011). Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of  membranes. Journal of Membrane Science, 366(1-2): 203-211.

16.   Parwaiz, S., Khan, M. M. and Pradhan, D. (2019). -based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Materials Express9(3): 185-202.

17.   Lu, X., Heenan, T. M., Bailey, J. J., Li, T., Li, K., Brett, D. J. and Shearing, P. R. (2017). Correlation between triple phase boundary and the microstructure of solid oxide fuel cell anodes: The role of composition, porosity and Ni densification. Journal of Power Sources, 365: 210-219.

18.   Somalu, M. R., Muchtar, A., Daud, W. R. W. and Brandon, N. P. (2017). Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75: 426-439.

19.   Zhang, J. and Jung, Y. G. (2018). Advanced ceramic and metallic coating and thin film materials for energy and environmental applications Berlin: Springer: pp. 20.

20.   Baharuddin, N. A., Abdul Rahman, N. F., Abd. Rahman, H., Somalu, M. R., Azmi, M. A. and Raharjo, J. (2020). Fabrication of high‐quality electrode films for solid oxide fuel cell by screen printing: a review on important processing parameters. International Journal of Energy Research, 44(11): 8296-8313.

21.   Chen, Y., Lin, Y., Zhang, Y., Wang, S., Su, D., Yang, Z. and Chen, F. (2014). Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network. Nano Energy, 8: 25-33.

22.   Talebi, T., Haji, M. and Raissi, B. (2010). Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs. International Journal of Hydrogen Energy, 35(17): 9420-9426.

23.   Ali, S. M., Muchtar, A., Sulong, A. B., Muhamad, N. and Majlan, E. H. (2013). Influence of sintering temperature on the power density of samarium-doped-ceria carbonate electrolyte composites for low-temperature solid oxide fuel cells. Ceramics International, 39(5): 5813-5820.