Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 589 - 599

 

 

 

 

THE THERMAL STABILITY AND PRELIMINARY PERFORMANCE OF SODIUM ALGINATE AND POLYVINYL ALCOHOL-BASED MEMBRANE IN DMFC: MONTMORILLONITE AS A FILLER

 

(Kestabilan Haba dan Prestasi Awal Membran Berasaskan Natrium Alginat dan Polivinil Alkohol untuk DMFC: Montmorillonit sebagai Pengisi)

 

Maryam Taufiq Musa and Norazuwana Shaari*

 

Fuel Cell Institute,

Universiti Kebangsaan Malaysia, Bangi,43600, Selangor, Malaysia

 

*Corresponding author:  norazuwanashaari@ukm.edu.my

 

 

Received: 15 December 2021; Accepted: 24 March 2022; Published:  27 June 2022

 

 

Abstract

Biopolymer-based membranes have emerged vastly in recent years for fuel cell applications. Polymer electrolyte membranes (PEM) have become a major component in DMFC stacks that have gone through many studies beforehand. An improvement has been made to PEM, especially using biopolymers like alginate based. Sodium alginate (SA) has significant characteristics such as being too hydrophilic, which is its biggest weakness as a PEM. Blending it with another polymer of polyvinyl alcohol (PVA) and adding a clay filler of montmorillonite (MMT) would be a great solution, in this work. From TGA-DSC analysis, SA/PVA-MMT achieved different thermal stability as the filler content differed. The glass transition temperature of the membrane had increased as the MMT content increased, at a maximum range of 240-260 °C at 15 wt.% of MMT content. The membrane’s thermal stability ranking was then followed by 10 wt.% (250 °C) and 2 wt.% (240 °C) of filler content. The higher the glass transition temperature, the greater the thermal stability due to the greater mass loss after being exposed to a later heating. Meanwhile, for the proton conductivity test, a hybrid membrane of SA/PVA-MMT with SVM 20 (20 wt.% MMT) obtained the highest value of 8.0510 mS/cm, followed by SVM 10, SVM 2, SVM 15 and SVM 5 with values of 6.5025, 2.6429, 2.0332 and 1.6083 mS/cm respectively. Higher proton conductivity enables the potential of the hybrid to conduct electricity in DMFC. The lowest methanol uptake was shown by the membrane with 20 wt.% MMT content, with a value of 53.00%, followed by 15 wt.% (97.46%), 10 wt.% (121.59%), 5 wt.% (132.23%) and 2 wt.% (203.30%), respectively. Low methanol uptake of the membrane indicated that the DMFC stack could operate with high efficiency. This study showed that SA/PVA-MMT could be a promising choice of PEM with an optimum MMT content of 10 wt.% for a better performance produced by a cheaper hybridized membrane.

 

Keywords:  alginate, polyvinyl alcohol, montmorillonite, copolymer membrane, thermal stability

 

Abstrak

Membran berasaskan biopolimer telah muncul secara meluas sejak kebelakangan tahun ini, dalam aplikasi sel fuel. Membran polimer elektrolit (PEM) telah menjadi komponen utama dalam tindanan DMFC, yang mana telah menjadi objek kajian berkali ganda sebelumnya. Satu penambahbaikan PEM telah dibuat khususnya menggunakan biopolimer alginat. Natrium Alginat (SA) mempunyai sifat signifikan iaitu terlalu hidrofili, yang mana ianya merupakan kelemahan terbesar sebagai PEM. Di dalam kajian ini, Natrium alginat (SA) akan dicampur bersama polivinil alkohol (PVA) dan montmorillonit (MMT), sejenis pengisi berasaskan tanah liat. Campuran ini telah menghasilkan prestasi yang amat baik. Daripada analisis TGA-DSC, SA/PVA-MMT telah mencapai kestabilan haba yang berbeza apabila kandungan pengisi turut berbeza. Suhu peralihan kaca membran tersebut bertambah apabila kandungan MMT dalam sampel juga bertambah, pada 15 wt.% MMT, maksima julat suhu dicapai ialah 240-260 ℃. Kestabilan haba membran ini kemudiannya diikuti dengan 10 wt.% (250 ℃) dan 2 wt.% (240 ℃) konten pengisi. Semakin tinggi suhu peralihan kaca, semakin tinggi kestabilan haba membran disebabkan jisim mula berkurang banyak pada suhu pemanasan yang tinggi (lebih lewat). Manakala untuk kekonduksian proton, SVM 20 (20 wt.% MMT) mendapat nilai tertinggi iaitu, 8.0510 mS/cm, diikuti dengan SVM 10, SVM 2, SVM 15 dan SVM 5 dengan nilaian 6.5025, 2.6429, 2.0332 dan 1.6083 mS/cm masing-masing. Tingginya nilai kekonduksian proton, semakin besarlah potensi membran hibrid tersebut untuk mengalirkan elektrik dalam DMFC. Ambilan metanol terendah dibuktikan oleh SVM 20 (20 wt.% MMT) dengan nilaian 53.00%, diikuti dengan 15 wt.% (97.46%), 10 wt.% (121.59%), 5 wt.% (132.23%) dan 2 wt% (203.30%)  masing-masing. Hasil ambilan metanol yang rendah menunjukkan tindanan DMFC boleh beroperasi pada tahap keberkesanan yang tinggi. Kajian ini menyimpulkan bahawa SA/PVA-MMT boleh menjadi pilihan PEM yang terbaik, dengan kandungan MMT optimum pada 10 wt% beserta kos yang rendah untuk prestasi yang lebih baik.     

 

Kata kunci:  alginat, polivinil alkohol, montmorillonit, membran dwipolimer, kestabilan haba

 

 


Graphical Abstract

 

 

References

1.      R., Chirachanchai, S., Shishatskiy, S. and Nunes, S. P. (2008). Sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs). Journal of Membrane Science, 323(2), 337-346.

2.      Singha, S., Koyilapu, R., Dana, K. and Jana, T. (2019). Polybenzimidazole-clay nanocomposite membrane for PEM fuel cell: Effect of organomodifier structure. Polymer, 167: 13-20.

3.      Yang, C. C. (2011). Fabrication and characterization of poly(vinyl alcohol)/montmorillonite/ poly(styrene sulfonic acid) proton-conducting composite membranes for direct methanol fuel cells. International Journal of Hydrogen Energy, 36(7): 4419–4431.

4.      You, P. Y., Kamarudin, S. K. and Masdar, M. S. (2019). Improved performance of sulfonated polyimide composite membranes with rice husk ash as a bio-filler for application in direct methanol fuel cells. International Journal of Hydrogen Energy, 44(3): 1857-1866.

5.      Xing, D., He, G., Hou, Z., Ming, P. and Song, S. (2011). Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. International Journal of Hydrogen Energy, 36(3): 2177-2183.

6.      Rosli, N. A. H., Loh, K. S., Wong, W. Y., Mohamad Yunus, R., Lee, T. K., Ahmad, A. and Chong, S. T. (2020). Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. International Journal of Molecular Sciences, 21(632): 1-52.

7.      Mohy Eldin, M. S., Farag, H. A., Tamer, T. M., Konsowa, A. H. and Gouda, M. H. (2020). Development of novel iota carrageenan-g-polyvinyl alcohol polyelectrolyte membranes for direct methanol fuel cell application. Polymer Bulletin, 77(9), 4895-4916.

8.      Shaari, N., Kamarudin, S. K. and Zakaria, Z. (2019). Potential of sodium alginate/titanium oxide biomembrane nanocomposite in DMFC application. International Journal of Energy Research, 43(14): 8057-8069.

9.      Yang, C. C. and Lin, S. J. (2002). Preparation of composite alkaline polymer electrolyte. Materials Letters, 57(4): 873-881.

10.   Charradi, K., Ahmed, Z., Aranda, P. and Chtourou, R. (2019). Silica / montmorillonite nanoarchitectures and layered double hydroxide- SPEEK based composite membranes for fuel cells applications. Applied Clay Science, 174: 77-85.

11.   Sainul Abidin, K., Kannan, R., Bahavan Palani, P. and Rajashabala, S. (2017). Role of structural modifications of montmorillonite , electrical properties effect , physical behavior of nanocomposite proton conducting membranes for direct methanol fuel cell applications. Materials Science-Poland, 35(4): 707-716.

12.   Wang, J., Gong, C., Wen, S., Liu, H., Qin, C., Xiong, C. and Dong, L. (2018). Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications. Carbohydrate Polymers, 186: 200-207.

13.   Zakaria, Z., Kamarudin, S. K., Timmiati, S. N. and Masdar, M. S. (2019). New composite membrane poly(vinyl alcohol)/graphene oxide for direct ethanol–proton exchange membrane fuel cell. Journal of Applied Polymer Science, 136(2): 1-13.

14.   Yang, C. C. and Lee, Y. J. (2009). Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solid Films, 517(17): 4735-4740.

15.   Wu, X.-W., Wu, N., Shi, C.-Q., Zheng, Z.-Y., Qi, H.-B. and Wang, Y.-F. (2016). Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells. Journal of Applied Surface Science, 2016: 1-6.

16.   Wang, F., Wang, D. and Zhu, H. (2018). Montmorillonite-polybenzimidazole inorganic-organic composite membrane with electric field-aligned proton transport channel for high temperature proton exchange membranes. Polymer-Plastics Technology & Engineering, 2018: 1-8.

17.   Ata, K. C., Kadioglu, T., Turkmen, A. C., Celik, C. and Akay, R. G. (2020). Investigation of the effects of SPEEK and its clay composite membranes on the performance of direct borohydride fuel cell. International Journal of Hydrogen Energy, 45(8): 5430-5437. 

18.   Shaari, N., Kamarudin, S. K., Basri, S., Shyuan, L. K., Masdar, M. S. and Nordin, D. (2018). Enhanced mechanical flexibility and performance of sodium alginate polymer electrolyte bio-membrane for application in direct methanol fuel cell. Journal of Applied Polymer Science, 135(37): 46666.

19.   Yang, J. M., Wang, N. C. and Chiu, H. C. (2014). Preparation and characterization of poly(vinyl alcohol)/sodium alginate blended membrane for alkaline solid polymer electrolytes membrane. Journal of Membrane Science, 457: 139-148.

20.   Shaari, N. and Kamarudin, S. K. (2020). Sodium alginate/alumina composite biomembrane preparation and performance in DMFC application. Polymer Testing, 81: 106183.

21.   Yang, C. C., Lee, Y. J. and Yang, J. M. (2009). Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. Journal of Power Sources, 188(1): 30-37.

22.   Shaari, N., Kamarudin, S. K., Basri, S., Shyuan, L. K., Masdar, M. S., & Nordin, D. (2018). Enhanced Proton Conductivity and Methanol Permeability Reduction via Sodium Alginate Electrolyte-Sulfonated Graphene Oxide Bio-membrane. Nanoscale Research Letters, 13(1): 1-16.

23.   Hemalatha, R., Alagar, M., Selvasekarapandian, S., Sundaresan, B. and Moniha, V. (2019). Studies of proton conducting polymer electrolyte based on PVA, amino acid proline and NH4SCN. Journal of Science: Advanced Materials and Devices, 4(1): 101-110.

24.   Kreuer, K. D. (2001). On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science, 185: 29-39.

25.   Radmanesh, F., Rijnaarts, T., Moheb, A., Sadeghi, M. and de Vos, W. M. (2019). Enhanced selectivity and performance of heterogeneous cation exchange membranes through addition of sulfonated and protonated Montmorillonite. Journal of Colloid and Interface Science, 533: 658-670.

26.   Uddin, F. (2018). Montmorillonite: An introduction to properties and utilization. IntechOpen Web of Science, Pakistan: pp. 1-23.

27.   Kakati, N., Maiti, J., Das, G., Lee, S. H. and Yoon, Y. S. (2015). An approach of balancing the ionic conductivity and mechanical properties of PVA based nanocomposite membrane for DMFC by various crosslinking agents with ionic liquid. International Journal of Hydrogen Energy, 40(22): 7114-7123.

28.   Yang, C.-C., Chiu, S. J., Lee, K.-T., Chien, W.-C., Lin, C.-T. and Huang, C.-A. (2008). Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. Journal of Power Sources, 184(1): 44-51.

29.   Kamjornsupamitr, T., Sangthumchai, T., Saejueng, P., Sumranjit, J., Hunt, A. J. and Budsombat, S. (2021). Composite proton conducting membranes from chitosan, poly(vinyl alcohol) and sulfonic acid-functionalized silica nanoparticles. International Journal of Hydrogen Energy, 46(2): 2479-2490.