Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 571 - 580

 

 

 

 

POTENTIAL OF TEXTILE WASTE AS NITROGEN DOPED POROUS CARBON FOR OXYGEN REDUCTION REACTION

 

(Potensi Sisa Tekstil Sebagai Karbon Poros Terdop Nitrogen Berliang untuk Tindak Balas Penurunan Oksigen)

 

Suhaila Mohd Sauid1, 3, Siti Kartom Kamarudin1,2*, Loh Kee Shyuan1

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3School of Chemical Engineering, College of Engineering

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  ctie@ukm.edu.my

 

 

Received: 13 December 2021; Accepted: 27 February 2022; Published:  27 June 2022

 

 

Abstract

Transforming waste into usable materials can protect and conserve the environment, thereby reducing the dependence on landfills, limiting the use of natural resources, and decreasing the carbon footprint. Every year, millions of tons of textile waste are sent to landfills primarily from discarded clothing. Therefore, this waste is worthwhile to convert into functional carbon product. Herein, textile waste from used clothing was converted into nitrogen-doped porous carbons (TNPC) by simple chemical activation followed by carbonisation. Urea and calcium chloride (CaCl2) served as nitrogen precursor and pore forming agent, respectively. The surface area and porosity of the prepared TNPCs were affected by the activation temperature. The optimal sample (TNPC900) activated at 900 °C exhibited a large surface area (496 m2 g–1) with appropriate porosity and a reasonable amount of nitrogen doped. Remarkably, the resultant TNPC900 catalyst tested as the electrode material for oxygen reduction reaction in 0.1 M KOH exhibited an outstanding positive onset potential of 0.94 V vs. RHE. TNCP900 catalyst also demonstrated superior stability and tolerance to methanol than Pt/C. Overall, this study showed that the conversion of textile waste through a simple synthesis technique into electrocatalyst could offer a sustainable alternative to Pt for potential applications in fuel cell and energy-storage technology.

 

Keywords:  textile waste, nitrogen-doped porous carbon, oxygen reduction reaction, metal-free catalyst

 

Abstrak

Mengubah sisa menjadi bahan yang boleh digunakan dapat melindungi dan memulihara alam sekitar sekaligus dapat mengurangkan kebergantungan pada tapak pelupusan sampah, mengehadkan penggunaan sumber semula jadi, dan mengurangkan jejak karbon. Setiap tahun, jutaan ton sisa tekstil dihantar ke tapak pelupusan sampah terutama dari pakaian terpakai. Oleh itu,  menukar sisa ini menjadi produk karbon berfungsi adalah usaha yang berbaloi.  Di sini,  sisa tekstil daripada pakaian terpakai telah ditukar kepada karbon berliang terdop nitrogen (TNPC) dengan pengaktifan kimia mudah diikuti dengan langkah karbonisasi. Urea dan kalsium klorida  (CaCl2)  bertindak masing-masing sebagai  bahan sumber nitrogen dan ejen pembentukan liang. Keluasan permukaan dan keliangan  TNPC yang disediakan telah dipengaruhi oleh suhu pengaktifan. Sampel optimum  (TNPC900) diaktifkan pada 900 ° C mempamerkan keluasan permukaan yang besar  (496 m2  g-1)  dengan  keliangan dan jumlah nitrogen terdop yang sesuai. Mangkin TNPC900 yang diuji sebagai bahan elektrod untuk tindak balas penurunan oksigen (ORR) di dalam larutan 0.1 M KOH menunjukkan potensi permulaan positif yang luar biasa iaitu 0.94 V vs RHE. Selain itu, mangkin TNCP900 menunjukkan kestabilan dan toleransi yang unggul terhadap metanol  daripada mangkin Pt/C. Oleh itu, kajian ini menunjukkan bahawa penukaran sisa tekstil menggunakan teknik sintesis  yang mudah  menjadi elektmangkin dapat menawarkan alternatif Pt yang  mampan untuk aplikasi di dalam sel bahan api dan teknologi penyimpanan tenaga.

 

Kata kunci:  sisa tekstil, karbon poros terdop nitrogen, tindak balas penurunan oksigen, mangkin bebas metal

 

 


Graphical Abstract


 

 

References

1.      Steele, B. C. H. and Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861): 345-352.

2.      Wang, Y., Li, J. and Wei, Z. (2018). Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 6(18): 8194-8209.

3.      Karim, N. A. and Kamarudin, S. K. (2013). An overview on non-platinum cathode catalysts for direct methanol fuel cell. Applied Energy, 103(9): 212-220.

4.      Wu, Z., Song, M., Wang, J. and Liu, X. (2018). Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction. Catalysts, 8(5): 196.

5.      Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T. and Nakamura, J. (2016). Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351(6271): 361-365.

6.      Li, J., Wang, S., Ren, Y., Ren, Z., Qiu, Y. and Yu, J. (2014). Nitrogen-doped activated carbon with micrometer-scale channels derived from luffa sponge fibers as electrocatalysts for oxygen reduction reaction with high stability in acidic media. Electrochimica Acta, 149: 56-64.

7.      Quílez-Bermejo, J., Morallón, E. and Cazorla-Amorós, D. (2020). Metal-free heteroatom-doped carbon-based catalysts for ORR. A critical assessment about the role of heteroatoms. Carbon, 165: 434-454.

8.      Gao, Z., Zhang, Y., Song, N. and Li, X. (2017). Biomass-derived renewable carbon materials for electrochemical energy storage. Materials Research Letters, 5(2): 69-88.

9.      Borghei, M., Lehtonen, J., Liu, L. and Rojas, O. J. (2018). Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Advanced Materials, 30(24): 1703691.

10.   Kaur, P., Verma, G. and Sekhon, S. S. (2019). Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Progress in Materials Science, 102: 1-71.

11.   Zhou, H., Zhang, J., Zhu, J., Liu, Z., Zhang, C. and Mu, S. (2016). A self-template and KOH activation co-coupling strategy to synthesize ultrahigh surface area nitrogen-doped porous graphene for oxygen reduction. RSC Advances, 6(77): 73292-73300.

12.   Zheng, B., Wang, J., Pan, Z., Wang, X., Liu, S., Ding, S. and Lang, L. (2020). An efficient metal-free catalyst derived from waste lotus seedpod for oxygen reduction reaction. Journal of Porous Materials, 27(3): 637-646.

13.   Polajnar Horvat, K. and Šrimpf Vendramin, K. (2021). Issues surrounding behavior towards discarded textiles and garments in Ljubljana. Sustainability (Switzerland), 13(11): 1-11.

14.   USEPA (2019). Textiles: Material-specific data. Available from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data#TextilesOverview. [Accessed online: 16-Dec-2019].

15.   Ramamoorthy, S. K., Skrifvars, M., Alagar, R. and Akhtar, N. (2018). End-of-life textiles as reinforcements in biocomposites. Journal of Polymers and the Environment, 26(2): 487-498.

16.   Sauid, S. M., Kamarudin, S. K., Karim, N. A. and Shyuan, L. K. (2021). Superior stability and methanol tolerance of a metal-free nitrogen-doped hierarchical porous carbon electrocatalyst derived from textile waste. Journal of Materials Research and Technology, 11: 1834-1846.

17.   Ge, X., Sumboja, A., Wuu, D., An, T., Li, B., Goh, F. W. T., … and Liu, Z. (2015). Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catalysis, 5(8): 4643-4667.

18.   Ratso, S., Kruusenberg, I., Käärik, M., Kook, M., Saar, R., Kanninen, P., … and Tammeveski, K. (2017). Transition metal-nitrogen co-doped carbide-derived carbon catalysts for oxygen reduction reaction in alkaline direct methanol fuel cell. Applied Catalysis B: Environmental, 219: 276-286.

19.   Zhou, R., Zheng, Y., Jaroniec, M. and Qiao, S. Z. (2016). Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catalysis, 6(7): 4720-4728.

20.   Tang, J., Wang, Y., Zhao, W., Zeng, R. J., Liu, T. and Zhou, S. (2019). Biomass-derived hierarchical honeycomb-like porous carbon tube catalyst for the metal-free oxygen reduction reaction. Journal of Electroanalytical Chemistry, 847: 113230.

21.   Shi, J., Lin, N., Lin, H. B., Yang, J. and Zhang, W. L. (2020). A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. Xinxing Tan Cailiao/New Carbon Materials, 35(4): 401-409.

22.   Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P. I. and Neimark, A. V. (2006). Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir, 22(2): 756-764.

23.   Jiang, M., Yu, X., Yang, H. and Chen, S. (2020). Optimization strategies of preparation of biomass-derived carbon electrocatalyst for boosting oxygen reduction reaction: A minireview. Catalysts, 10(12): 1-17.

24.   Mao, X., Cao, Z., Yin, Y., Wang, Z., Dong, H. and Yang, S. (2018). Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 43(22): 10341-10350.

25.   Zhao, Q., Ma, Q., Pan, F., Wang, Z., Yang, B., Zhang, J. and Zhang, J. (2016). Facile synthesis of nitrogen-doped carbon nanosheets as metal-free catalyst with excellent oxygen reduction performance in alkaline and acidic media. Journal of Solid State Electrochemistry, 20(5): 1469-1479.

26.   Zhang, W., Qi, J., Bai, P., Wang, H. and Xu, L. (2019). High-level nitrogen-doped, micro/mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction: Optimizing the reaction surface area by a solvent-free mechanochemical method. New Journal of Chemistry, 43(27): 10878-10886.

27.   Lazar, P., Mach, R. and Otyepka, M. (2019). Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. Journal of Physical Chemistry C, 123(16): 10695-10702.

28.   Zainul Abidin, A. F., Loh, K. S., Wong, W. Y. and Mohamad, A. B. (2019). Nitrogen-doped carbon xerogels catalyst for oxygen reduction reaction: Improved structural and catalytic activity by enhancing nitrogen species and cobalt insertion. International Journal of Hydrogen Energy, 44(54): 28789-28802.

29.   Sharifi, T., Hu, G., Jia, X. and Wågberg, T. (2012). Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano, 6(10): 8904-8912.

30.   Liu, R., Zhang, H., Liu, S., Zhang, X., Wu, T., Ge, X., … and Wang, G. (2016). Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 18(5): 4095-4101.

31.   Zheng, F. Y., Li, R., Ge, S., Xu, W. R. and Zhang, Y. (2020). Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells. Journal of Power Sources, 446: 227356.

32.   Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C. and Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy and Environmental Science, 5(7): 7936-7942.

33.   Xu, S. S., Qiu, S. W., Yuan, Z. Y., Ren, T. Z. and Bandosz, T. J. (2019). Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. Journal of Colloid and Interface Science, 540: 285-294.

34.   Akula, S. and Sahu, A. K. (2019). Heteroatoms co-doping (N, F) to the porous carbon derived from spent coffee grounds as an effective catalyst for oxygen reduction reaction in polymer electrolyte fuel cells. Journal of The Electrochemical Society, 166(2): F93-F101.

35.   Li, D., Fan, Y., Yuan, H., Deng, L., Yang, J., Chen, Y. and Luo, B. (2020). Renewable and metal-free carbon derived from aquatic scindapsus affording meso–microporosity, large interface, and enriched pyridinic-N for efficient oxygen reduction reaction catalysis. Energy & Fuels, 34(10): 13089-13095.

36.   Fan, Z., Li, J., Zhou, Y., Fu, Q., Yang, W., Zhu, X. and Liao, Q. (2017). A green, cheap, high-performance carbonaceous catalyst derived from Chlorella pyrenoidosa for oxygen reduction reaction in microbial fuel cells. International Journal of Hydrogen Energy, 42(45): 27657-27665.

37.   Cao, C., Wei, L., Zhai, Q., Wang, G. and Shen, J. (2017). Biomass-derived nitrogen and boron dual-doped hollow carbon tube as cost-effective and stable synergistic catalyst for oxygen electroreduction. Electrochimica Acta, 249: 328-336.