Malaysian Journal of Analytical Sciences Vol 26 No 3 (2022): 562 - 570

 

 

 

 

EFFECT OF pH IN THE SYNTHESIS OF GOLD-COPPER NANOPARTICLES SUPPORTED ON ANODIC ALUMINIUM OXIDE AS CATALYST FOR THE REDUCTION OF p-NITROPHENOL

 

(Kesan pH dalam Sintesis Emas-Kuprum (Au-Cu) Partikel Nano Disokong pada Anodik Aluminium Oksida Sebagai Mangkin bagi Penurunan p-Nitrofenol)

 

Norizwan Nordin1, Hanani Yazid1,2, Nor Azira Irma Muhammad2 and Abdul Mutalib Md Jani3*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 2Faculty of Applied Sciences,

Universiti Teknologi MARA, Perlis Branch, Arau Campus, 02600 Arau, Perlis, Malaysia

 3Faculty of Applied Sciences,

Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah Road, Perak, Malaysia

 

*Corresponding author:  abdmutalib@uitm.edu.my

 

 

Received: 9 December 2021; Accepted: 6 March 2022; Published: 27 June 2022 

 

Abstract

Gold–copper (Au–Cu) bimetallic catalysts were prepared through chemical reduction with Cu and Au precursors at the pH of 3, 5, 7 and 9 and hexadecylamine as the capping agent to produce Au–Cu bimetallic nanoparticles (Au–Cu NPs). The colloidal Au–Cu NPs were then grafted onto an anodic aluminium oxide (AAO) support through spin coating. The AAO support was fabricated via a two-step anodization method at 80 V by using oxalic acid as the electrolyte. The Au–Cu/AAO catalysts were characterized through field emission scanning electron microscopy–energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and inductive coupled plasma–optical emission spectroscopy. The catalytic activities of the Au–Cu bimetallic catalysts in the reduction of p-nitrophenol (p-NP) were evaluated. Results showed that the rate constant (k) varied in accordance with the pH of the Au precursor. The highest k value of 4.6 × 10−3 s−1 was obtained with the Au–Cu catalyst prepared at pH 7. The better performance of the investigated bimetallic catalyst than that of the monometallic Au and Cu catalysts demonstrated the promotional role of the second metal in the reduction of p-NP.

 

Keywords:  Au–Cu NPs, pH, anodic aluminium oxide

 

Abstrak

Pemangkin dwilogam Au-Cu dengan prekursor Au pH 3, 5, 7 dan 9 disediakan dengan menggunakan prekursor Cu secara kaedah penurunan kimia dengan heksadesilamin (HDA) sebagai agen penutup untuk penghasilan nanopartikel Au-Cu (NP Au-Cu).  Dwilogam NP Au-Cu telah dicantumkan pada sokongan anodik aluminium oxida (AAO) melalui kaedah salutan putaran. Sokongan AAO telah difabrikasi pada 80 V menggunakan asid oksalik sebagai elektrolit melalui kaedah anodisasi dua langkah. Pemangkin Au-Cu/AAO dicirikan oleh mikroskopi elektron pengimbasan pelepasan medan-spektroskopi sinar-X penyerakan tenaga (FESEM-EDX), spektroskopi inframerah transformasi fourier (FTIR) dan spektroskopi pelepasan plasma-optik berganding induktif (ICP-OES). Penurunan p-nitrofenol digunakan untuk menilai aktiviti pemangkin bimetal Au-Cu. Keputusan menunjukkan bahawa pemalar kadar, (k) adalah berbeza bergantung kepada pH prekursor. Nilai k tertinggi iaitu 4.6 x 10-3 s-1 telah diperolehi daripada pemangkin Au-Cu yang disediakan pada pH 7. Daripada kajian ini, pemangkin dwilogam menunjukkan prestasi yang lebih baik berbanding pemangkin Au dan Cu logam mono, menunjukkan peranan promosi logam kedua ke arah penurunan p-nitrophenol.

 

Kata kunci:  NP Au-Cu, pH, anodik aluminium oksida

 

 


Graphical Abstract


 

 

References

1.      Ahmad Zulkifli, F. W., Yazid, H. and Jani, A. M. M. (2021). Immobilization of carbon nanotubes decorated gold nanoparticles on anodized aluminium oxide (Au-CNTs-AAO) membrane for enhanced catalytic performance. Materials Chemistry and Physics, 264: 124445.

2.      Behera, M., Tiwari, N., Basu, A., Rekha Mishra, S., Banerjee, S., Chakrabortty, S. and Tripathy, S. K. (2021). Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 32(8): 2905-2915.

3.      He, R., Wang, Y.-C., Wang, X., Wang, Z., Liu, G., Zhou, W., Wen, L., Li, Q., Wang, X., Chen, X., Zeng, J. and Hou, J. G. (2014). Facile synthesis of pentacle gold–copper alloy nanocrystals and their plasmonic and catalytic properties. Nature Communications, 5: 1-10.

4.      Heiligtag, F. J. and Niederberger, M. (2013). The fascinating world of nanoparticle research. Materials Today, 16: 262-271.

5.      Odenbrand, C. U. I., Blanco, J., Avila, P. and Knapp, C. (1999). Lean NOx reduction in real diesel exhaust with copper and platinum titania based monolithic catalysts. Applied Catalysis B: Environmental, 23: 37-44.

6.      Yazid, H., Adnan, R., Farrukh, M. A. and Hamid, S. A. (2011). Synthesis of Au/Al2O3 nanocatalyst and its application in the reduction of p-Nitrophenol. Journal of the Chinese Chemical Society, 58(5): 593-601.

7.      Rout, L., Kumar, A., Dhaka, R. S., Reddy, G. N., Giri, S. and Dash, P. (2017). Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: Synthesis, catalytic activity and investigation of synergistic effect by DFT analysis. Applied Catalysis A: General, 538: 107-122.

8.      Sobczak, I. and Wolski, Ł. (2015). Au–Cu on Nb2O5 and Nb/MCF supports – Surface properties and catalytic activity in glycerol and methanol oxidation. Catalysis Today, 254: 72-82.

9.      Sharma, G., Kumar, A., Sharma, S., Naushad, M., Prakash Dwivedi, R., Al Othman, Z. A. and Mola, G. T. (2017). Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University-Science. 31(2): 257-269.

10.   Zeng, S., Yong, K. T., Roy, I., Dinh, X. Q., Yu, X. and Luan, F. (2011). A review on functionalized gold nanoparticles for biosensing applications. Plasmonics, 6(3): 491-506.

11.   Rocha Rocha, M. Cortez Valadez, A. R. Hernandez Martinez, R. Gamez Cor-rales, R. A. Alvarez, R. Brito Hurtado, M. and Flores Acosta, (2019). Green synthesis of Ag-Cu nanoalloys using opuntia ficus-indica, Journal of Electronic Material, 46: 802-807.

12.   Kumar, V., Singh, D. K., Mohan, S., Bano, D., Gundampati, R. K. and Hasan, S. H. (2017). Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. Journal of Photochemistry and Photobiology B: Biology, 168: 67-77.

13.   Chen, H. J., Shao, L., Li, Q. and Wang, J. F. (2013). Gold nanorods and their plasmonic properties, Chemical Society Reviews, 42: 2679-2724.

14.   Brust, M. and Kiely, C. J. (2002). Some recent advances in nanostructure preparation from gold and silver particles: a short topical review, Colloids Surf. A, Physicochemical and Engineering Aspect 202  175-186.

15.   Seo, M. H., Choi, S. M., Seo, J. K., Noh, S. H., Kim, W. B., & Han, B. (2013). The graphene-supported palladium and palladium–yttrium nanoparticles for the oxygen reduction and ethanol oxidation reactions: Experimental measurement and computational validation. Applied Catalysis B, Environmental, 129: 163-171.

16.   Habiballah, A. S., Jani, A. M. M., Mahmud, A. H., Osman, N. and Radiman, S. (2016). Facile synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite nanowires by templating from nanoporous anodic aluminium oxide membranes. Materials Chemistry and Physics, 177: 371-378. 

17.   Chung, C. K., Tsai, C. H., Hsu, C. R., Kuo, E. H., Chen, Y. and Chung, I. C. (2017). Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature. Corrosion Science, 125: 40-47.

18.   Nordin, N., Noor, N. M., Wahab, N. A. A., Yazid, H. and Jani, A. M. (2020). Preparation of bimetallic catalyst: gold-copper (Au-Cu) nanoparticles for catalytic reduction of p-nitrophenol. IOP Conference Series: Materials Science and Engineering, 957(1): 012036.