Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 283 - 294

 

 

 

 

CHROMIUM (VI) ANALYSIS IN EFFLUENTS USING LIQUID-LIQUID EXTRACTION COUPLED WITH FLAME ATOMIC ABSORPTION SPECTROMETRY

 

(Analisis Kromium (VI) dalam Efluen Menggunakan Pengekstrakan Cecair-Cecair Bersama Spektrometri Serapan Nyalaan Atom)

 

Nguyen Cong-Hau1, Le-Thi Anh-Dao1, Nguyen Thanh-Nho1*, Le-Thi Huynh-Mai2, Le Nhon-Duc3, Do Minh-Huy1

 

1Faculty of Environmental and Food Engineering,

Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

2Faculty of Chemistry,

University of Science, Vietnam National University Ho Chi Minh City, Vietnam

3Warrantek Joint Stock Company, Testing Center, Can Tho City, Vietnam

 

*Corresponding author:  ntnho@ntt.edu.vn

 

Received: 1 September 2021; Accepted:  10 January 2022; Published:  28 April 2022

 

 

Abstract

Simple sample preparation was investigated and developed to selectively determine Cr(VI) in wastewater samples or effluents based on the liquid-liquid extraction principle using tetrabutylammonium hydrogensulfate (TBAHS) as the ion-pair reagent in an acidic medium. TBAHS was prepared in an organic solvent to improve the extraction efficiency. The extracted Cr(VI) in the organic phase endured the acid digestion, and its atomic absorption was measured at 357.9 nm. The influences of several working parameters, namely, organic solvents (methyl isobutyl ketone-MIBK, dichloromethane-DCM, and chloroform), pH values (lower than 1.0, 1.0, 2.0, and 3.0) in the aqueous phase, TBAHS concentrations in the organic solvent (0.02, 0.04, 0.05, and 0.06 mol L–1), extraction duration (from 3 to 30 minutes), number of extraction cycles (single or repeated extraction), sample preservation duration at ambient temperature, and co-existence of Cr(III) in the sample matrices, were investigated to discover the optimized working parameters. The results showed that dichloromethane (DCM) was the most effective extraction solvent. The most favorable conditions for complex formation were determined as follows: a pH of around 1.0 to 3.0; 0.05 mol L1 TBAHS prepared in DCM, triple extraction, and a shaking duration of 15 minutes for each extraction cycle. The calibration curve was linear in the range of 0.05, 0.10, 0.20, 0.40, 0.60, 0.90, 1.2, 1.5 and 2.0 mg L–1, and the regression equation was y = 0.1068x + 0.0012 with R2 = 0.9994, exhibiting goodness of linearity. The method detection and quantification limit values were estimated to be 0.012 mg L–1 and 0.04 mg L–1, respectively. The repeatability (RSDr = 0.71%) and reproducibility (RSDR = 1.1%) were favorable according to the requirements presented in Appendix F of AOAC (2016) for analytical method validation. The proposed method was applied to real wastewater samples and spiked samples, showing very low Cr(VI) concentrations for most samples and proper recoveries (91.1-109%).

 

Keywords:  Cr(VI), Cr(III), liquid-liquid extraction, TBAHS, dichloromethane, DCM, ion-pair reagent 

 

 

Abstrak

Penyediaan sampel yang mudah telah dikaji dan dibangunkan bagi penentuan terpilih Cr(VI)  di dalam air sisa atau efluen berdasarkan prinsip pengekstrakan cecair-cecair menggunakan tetrabutylammonium hidrogensulfat (TBAHS) sebagai reagen pasangan ion di dalam medium berasid. TBAHS telah disediakan dalam pelarut organik bagi tujuan meningkatkan keberkesanan pengekstrakan. Cr(VI) yang telah diekstrak di dalam fasa organik melalui penghadaman asid, dan serapan atom telah diukur pada 357.9 nm. Pengaruh parameter seperti  pelarut organik (metil isobutil keton-MIBK, diklorometana-DCM, dan klorofom), nilai pH (dibawah 1.0, 1.0, 2.0 dan 3.0) di dalam fasa akues, kepekatan TBAHS di dalam pelarut organik (0.02, 0.04, 0.05, dan 0.06 mol L–1), tempoh pengekstrakan (dari 3 hingga 30 minutes), bilangan kitaran pengekstrakan (pengekstrakan tunggal atau ulangan), tempoh pengawetan sampel pada suhu sekitar, dan kehadiran bersama Cr(III) dalam matrik sampel turut dikaji untuk penentuan parameter kerja yang optimum. Hasil kajian menunjukkan diklorometana (DCM) paling efektif sebagai pelarut pengekstrakan. Keadaan paling baik untuk penghasilan kompleks ditentukan seperti berikut: pH antara 1.0 hingga 3.0; 0.05 mol L1 TBAHS disediakan dalam DCM, tiga kali pengekstrakan, dan masa goncangan ialah 15 minit bagi setiap kitaran pengekstrakan. Lengkung kalibrasi adalah linear pada julat 0.05 hingga 2.0 mg L–1, dan persamaan regresi ialah y = 0.1068x + 0.0012 dan R2 = 0.9994. Had pengesanan dan kuantifikasi telah dihitung masing-masing pada  0.012 mg L–1 and 0.04 mg L–1. Kebolehulangan (RSDr = 0.71%) dan kebolehhasilan semula (RSDR = 1.1%) adalah baik berdasarkan keperluan yang dinyatakan dalam Appendix F of AOAC (2016) bagi validasi kaedah analisis. Kaedah yang dicadang ini telah digunapakai bagi analisis sampel air sisa sebenar dan sampel yang dipaku, ia menunjukkan kepekatan Cr(VI) yang rendah dan perolehan semula yang baik (91.1-109%).

 

Kata kunci:  Cr(VI), Cr(III), pengekstrakan cecair-cecair, diklorometana, reagen pasangan ion

 

 

 


Graphical Abstract

 

 

References

1.      Ali, H., Khan, E. and Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019 (6730305): 1-14. 

2.      Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D.J. (2012). Heavy metal toxicity and the environment. Springer.

3.      Saha, R., Nandi, R. and Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10): 1782-1806.

4.      Oliveira, H. (2012). Chromium as an environmental pollutant: Insights on induced plant toxicity. Journal of Botany, 2012(375843): 1-8.

5.      Jia, X., Gong, D., Xu, B., Chi, Q. and Zhang, X. (2016). Development of a novel, fast, sensitive method for chromium speciation in wastewater based on an organic polymer as solid phase extraction material combined with HPLC–ICP-MS. Talanta, 147: 155-161.

6.      Séby, F. and Vacchina, V. (2018). Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices. Trends in Analytical Chemistry, 104: 54-68.

7.      Ouejhani, A., Dachraoui, M., Lalleve, G. and Fauvarque, J.-F. (2003). Hexavalent chromium recovery by liquid-liquid extraction with tributylphosphate from acidic chloride media. Analytical Sciences, 19(11): 1499-1504.

8.      Kalidhasan, S. and Rajesh, N. (2009). Simple and selective extraction process for chromium (VI) in industrial wastewater. Journal of Hazardous Materials, 170(2-3): 1079-1085.

9.      Noro, J., Maruyama, K. and Komatsu, Y. (2002). Separation of chromium (III) and chromium (VI) by the combination of solvent and ion exchange methods. Analytical Sciences/Supplements Proceedings of IUPAC International Congress on Analytical Sciences, 2001: 1333-1336.

10.   Islam, F. and Biswas, R. (1979). The solvent extraction of chromium (III) with bis-(2-ethyl hexyl) phosphoric acid in benzene and other solvents. Journal of Inorganic and Nuclear Chemistry, 41(2): 229-233.

11.   Gardner, M. and Comber, S. (2002). Determination of trace concentrations of hexavalent chromium. Analyst, 127(1): 153-156.

12.   Shinde, V. and Khopkar, S. (1970). Extraction of chromium (VI) with 4-methyl-3-pentene-2-one and subsequent photometric determination as diphenylcarbazide complex. Fresenius' Zeitschrift für analytische Chemie, 249(4): 239-241.

13.   Venkateswaran, P. and Palanivelu, K. (2004). Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution. Separation and Purification Technology, 40(3): 279-284.

14.   Konieczka, P. and Namiesnik, J. (2016). Quality assurance and quality control in the analytical chemical laboratory: A practical approach, CRC Press.

15.   Ellison, S. L., Barwick, V. J. and Farrant, T. J. D. (2009). Practical statistics for the analytical scientist: A bench guide, Royal Society of Chemistry.

16.   ISO 5667-3:2003 (2003). Water quality-Sampling-Part 3: Guidance on the preservation and handling of water samples.

17.   ISO 5667-10:2020 (2020). Water quality-Sampling-Part 10: Guidance on sampling of waste waters.

18.   Wypych, G. (2001). Handbook of solvents, ChemTec Publishing.

19.   Polarity Index. https://macro.lsu.edu/howto/ solvents/polarity%20index.htm. [Assess online 20 December 2020].

20.   Kalidhasan, S., Ganesh, M., Sricharan, S. and Rajesh, N. (2009). Extractive separation and determination of chromium in tannery effluents and electroplating waste water using tribenzylamine as the extractant. Journal of Hazardous Materials, 165(1-3): 886-892.

21.   Baig, J. A., Kazi, T. G., Elci, L., Afridi, H. I., Khan, M. I. and Naseer, H. M. (2013). Ultratrace determination of Cr (VI) and Pb (II) by microsample injection system flame atomic spectroscopy in drinking water and treated and untreated industrial effluents. Journal of Analytical Methods in Chemistry, 2013: 629495

22.   Sereshti, Khojeh, V. and Samadi, S. (2011). Optimization of dispersive liquid–liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta, 83(3): 885-890.

23.   Tandon, R., Crisp, P., Ellis, J. and Baker, R. (1984). Effect of pH on chromium (VI) species in solution. Talanta, 31(3): 227-228.

24.   Kalidhasan, S. and Rajesh, N. (2009). Simple and selective extraction process for chromium (VI) in industrial wastewater. Journal of Hazardous Materials, 170(2-3): 1079-1085.

25.   Sperling, M., Xu, S. and Welz, B. (1992). Determination of chromium (III) and chromium (VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Analytical Chemistry, 64(24): 3101-3108.

26.   Palmer, C. D. (1994). Natural attenuation of hexavalent chromium in ground water and soils: Superfund Technology Support Center for Ground Water.

27.   Leśniewska, B., Jeglikowska, A. and Godlewska-Żyłkiewicz, B. (2016). Chromium speciation in wastewater and sewage by solid-phase extraction using a new diphenylcarbazone-incorporated resin. Water, Air, & Soil Pollution, 227(8): 1-10.

28.   Zhang, L. and Lay, P. A. (1996). EPR Spectroscopic studies of the reactions of Cr (VI) with l-ascorbic acid, l-dehydroascorbic acid, and 5, 6-O-isopropylidene-l-ascorbic acid in water. 1 Implications for chromium (VI) genotoxicity. Journal of the American Chemical Society, 118(50): 12624-12637.

29.   Xu, X.-R., Li, H.-B., Li, X.-Y. and Gu, J.-D. (2004). Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere, 57(7): 609-613.

30.   QCVN 24:2009/BTNMT (2009). National Technical Regulation on Industrial Wastewater.

31.   Appendix F of AOAC (2016). Guidelines for Standard Method Performance Requirements.