Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 295 - 302
KAFFIR LIME OIL QUALITY GRADING USING NON-LINEAR SUPPORT VECTOR
MACHINE WITH DIFFERENT KERNELS
(Penentuan Kualiti Minyak
Limau Purut Dengan Menggunakan Mesin Vektor Sokongan Bukan Linear Dengan Kernel
Berbeza)
Nor Syahira Jak Jailani1*, Zuraida Muhammad2,
Nor Salwa Damanhuri2, Muhd Hezri Fazalul Rahiman1, Mohd
Nasir Taib1
1College of Engineering,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
2College of Engineering,
Universiti
Teknologi MARA,
13500 Permatang Pauh, Pulau Pinang, Malaysia
*Corresponding
author: norsyahira_jakjailani@yahoo.com
Received: 23 September 2021;
Accepted: 5 February 2022;
Published: 28 April 2022
Abstract
Nowadays, Kaffir lime oil is one of the highly
demand in the industries and sold with various market prices. But sometime the
most expensive price of kaffir lime oil does not guarantee the best quality of
this oil. Currently, kaffir lime oil quality grading is based only on human
sensory evaluation such as smell and visual which accompanying with confusion
and inconsistent result. This is due to human sensory evaluations have
limitations such as easily fatigue and unable to manage mass products of the
oil in time. This paper presents the classification of significant chemical
compound of kaffir lime oil in the oil quality grading by using Non-Linear
Support Vector Machine (NSVM). The objective of this study is to classify the
quality of kaffir lime oil whether it is high or low in quality only by tuning
the two different kernels into NSVM. This project has used up to 90 samples of
kaffir lime oil data from various high to low quality to prepare NSVM with two
different kernels. The implementation of this project was performed by using
MATLAB version R2020A. The result appeared NSVM model with RBF kernel is better
than NSVM model with Polynomial kernel. It was discovered that RBF kernel was
able to generate 100% accuracy, specificity, precision, and sensitivity
compared to Polynomial kernel. Since the finding and outcome were effective and
significant, thus this study contributes a lot of benefits for future study
especially in kaffir lime field.
Keywords: non-linear support vector machine, radial
basis function, polynomial, kaffir lime oil, high/low quality
Abstrak
Saat ini,
minyak limau purut mendapat permintaan tinggi di industri, dan dijual dengan
harga yang berbeda di pasar. Tetapi harga minyak limau purut yang mahal tidak
menjamin kualiti tinggi minyak ini. Pada masa ini, penilaian kualiti minyak
limau purut berdasarkan penilaian deria seperti hidung dan mata menimbulkan
kekeliruan dan hasil yang tidak konsisten. Ini kerana penilaian deria mempunyai
batasan dan mudah letih dan tidak dapat menangani banyak sampel sekaligus. Oleh
itu, kajian inimembentangkan klasifikasi sebatian kimia yang penting dalam
minyak limau purut untuk gred kualiti minyak dengan menggunakan Mesin Vektor
Sokongan Bukan Linear (NSVM). Objektif kajian ini adalah untuk
mengklasifikasikan kualiti minyak limau purut sama ada berkualiti tinggi atau
rendah dengan menyesuaikan dua kernel yang berbeza ke dalam NSVM. Projek ini
menggunakan 90 sampel data minyak limau purut dari berkualiti tinggi hingga
rendah untuk melatih NSVM dengan kernel yang berbeza. Pelaksanaan projek ini
dilakukan dengan menggunakan MATLAB versi R2020A. Hasilnya menunjukkan model
NSVM dengan kernel RBF lebih baik daripada model NSVM dengan kernel Polinomial.
Didapati kernel RBF mampu menghasilkan ketepatan, kekhususan, ketepatan, dan
kepekaan 100% berbanding dengan kernel Polinomial. Penemuan dan hasil ini
berkesan dan signifikan sekali gus akan mendorong dan memberi banyak faedah
untuk kajian masa depan terutama dalam bidag limau purut
Kata
kunci: mesin vektor sokongan bukan linear,
fungsi asas radial, polinomial, minyak limau purut, kualiti tinggi/rendah
Graphical Abstract
References
1.
Abas, M. A.,
Zubir, N. S. A., Ismail, N., Yassin, I. M., Ali, N. A. M., Rahiman, M. H. F.
and Taib, M. N. (2017). Agarwood oil quality classifier using machine
learning. Journal of Fundamental and Applied Sciences, 9(4):
62-76.
2.
Haron,
M. H., Taib, M. N., Ismail, N., Mohd Ali, N. A. and Tajuddin, S. N. (2019).
Statistical analysis of agarwood oil compounds based on GC-MS data. 9th
IEEE Control System Grad. Research Colloquium: pp. 27-30.
3.
Azah, M. N., Husni, S. S., Mailina, J., Sahrim, L., Majid, J. A. and
Faridz, Z. M. (2013). Classification of agarwood (gaharu) by resin
content. Journal of Tropical Forest Science, 2013: 213-219.
4.
Ismail, N., Azah, M. A. N., Jamil, M., Rahiman, M. H. F., Tajuddin, S.
N. and Taib, M. N. (2013). Analysis of high quality agarwood oil chemical
compounds by means of SPME/GC-MS and Z-score technique. Malaysian
Journal of Analytical Sciences, 17(3): 403-413.
5.
Jantan, H., Yassin, I. M., Zabidi, A., Ismail, N. and Ali, M. M. (2017).
Differentiation of agarwood oil quality using support vector machine
(SVM). Journal Engineering Applied Sciences, 12(15):
3810-3812.
6.
Mohd Sauid, S. and Aswandi, F. A. (2018). Extraction methods of
essential oil from kaffir lime (Citrus hystrix): A review. Malaysian
Journal of Chemical Engineering and Technology, 1: 56-64.
7.
Kasuan, N., Muhammad, Z., Yusoff, Z., Fazalul Rahiman, M. H., Taib, M.
N. and Haiyee, Z. A. (2013). Extraction of Citrus hystrix DC (kaffir
lime) essential oil using automated steam distillation process: analysis of
volatile compounds. Malaysian Journal of Analytical Sciences, 17:
359-369.
8.
Haiyee
Z. A. and Winitkitcharoen, C. (2012). Extraction of volatile oil from kaffir
lime leaves (Citrus hystrix) using pressurize liquid extraction. International
Journal Food, Nutrition Public Health, 5: 201-210.
9.
Muhammad, Z., Yusoff, Z. M. and Nordin, M. N. N. (2013). Steam
Distillation with induction heating system: analysis of kaffir lime oil
compound and production yield at various temperatures. Malaysian
Journal of Analytical Sciences, 17(2):
340-347.
10.
Ngan, T. T. K., Hien, T. T., Tien, L. X., Anh, T. T., Quan, P. M., Cang,
M. H. and Toan, T. Q. (2019). Physico-chemical profile of essential oil of
kaffir lime (Citrus hystrix DC) grown in An Giang Province,
Vietnam. Asian Journal Chemistry, 31(12): 2855-2858.
11.
Hongatanaworkit,
T. and Buchbauer, G. (2007). Chemical composition and stimuating effect of Citrus
hystrix oil on human. Flavour Fragrance Journal, 22(4): 443-449.
12.
Dewi, C.
and Basuki, A. (2018). Identifying citronella plants from UAV imagery using
support vector machine. Telkomnika, 16(4): 1877?1885.
13.
Windha
Mega, P. D. and Haryoko (2019). Optimization of parameter support vector
machine (SVM) using genetic algorithm to review go-jek?s services. 4th
International Conference Information Technology, Information System, and
Electrical Engineering, 6: 301-304.
14.
Zakiah,
M. Y., Zuraida, M., Nurhani, K., Mohd, H. F. R. and Mohd, N. T. (2013). Effect
of temperature on kaffir lime oil by using hydro-diffusion steam distillation
system. Malaysian Journal of Analytical Sciences, 17(2), 326-339.
15.
Lubinska-Szczygieł, M., R?żańska, A., Namieśnik, J.,
Dymerski, T., Shafreen, R. B., Weisz, M., ... & Gorinstein, S. (2018).
Quality of limes juices based on the aroma and antioxidant properties. Food
Control, 89: 270-279.
16.
An, T. N. T., Ngan, T. T. K., Van, C. K., Anh, H. L. T., Minh, L. V. and
Ay, N. V. (2021, March). The major and minor components of Kaffir Lime (Citrus
hystrix DC) essential oil in the steam distillation process. In IOP
Conference Series: Materials Science and Engineering, 1092(1): 012082.
17.
Jailani, N. S. J., Muhammad, Z., Rahiman, M. H. F. and Taib, M. N.
(2021). Analysis of kaffir lime oil chemical compounds by gas
chromatography-mass spectrometry (GC-MS) and Z-Score technique. In 2021
IEEE International Conference on Automatic Control & Intelligent Systems: pp.
110-113.
18.
Ismail, N., Rahiman, M. H. F., Taib, M. N., Ali, N. A. M., Jamil, M. and
Tajuddin, S. N. (2014). Application of ANN in agarwood oil grade classification.
In 2014 IEEE 10th International Colloquium on Signal Processing and its
Applications: pp. 216-220.
19.
Sevgi,
L. (2007). Synthetic radar-Signal environment: Computer generation of signal,
noise, and clutter. IEEE Antennas and Propagation Magazine, 49(5):
192-198.
20.
Ismail, N. S., Ismail, N., Rahiman, M. H. F., Taib, M. N., Ali, N. A. M.
and Tajuddin, S. N. (2018, October). Polynomial tuned kernel parameter in SVM
of agarwood oil for quality classification. In 2018 IEEE International
Conference on Automatic Control and Intelligent Systems: pp. 77-82.
21.
Ariffin, B. M., Ismail, N.,
Ali, N. A. M., Rahiman, M. H. F., Tajuddin, S. N. and Taib, M. N. (2018).
Multilayer perceptron (MLP) tuned kernel parameter in support vector machine
(SVM) for agarwood oil compounds quality classification. J. Tomography
System and Sensors Application, 1(1): 1-15.
22.
Raif, M.
A. A., Ismail, N., Ali, N. A. M., Rahiman, M. H. F., Tajuddin, S. N. and Taib,
M. N. (2019). Quadratic tuned kernel parameter in Non-linear support vector machine
(SVM) for agarwood oil compounds quality classification. Indonesia Journal
Electronic Engineering Computer Science, 17(3): 1371-1376.
23.
Patle,
A. and Chouhan, D. S. (2013). SVM kernel functions for classification. In 2013
International Conference on Advances in Technology and Engineering, pp.
1-9.
24.
Apostolidis-Afentoulis,
V. and Lioufi, K. I. (2015). SVM classification with linear and RBF kernels:
pp. 1-7.
25.
Kamarulzaini, K. A. A., Ismail, N., Rahiman, M. H. F., Taib, M. N., Ali,
N. A. M. and Tajuddin, S. N. (2018). Evaluation of RBF and MLP in SVM kernel
tuned parameters for agarwood oil quality classification. In 2018 IEEE
14th International Colloquium on Signal Processing & Its Applications, pp.
250-254.