Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 251 - 268
POTENTIAL
APPLICATIONS OF CONDUCTING POLYMER/TUNGSTEN DISULFIDE COMPOSITES: A MINI REVIEW
(Aplikasi
Potensi Konduktif Polimer/ Tungsten Disulfida komposit: Ulasan Mini)
Siti Nor Atika Baharin1,
Nur Solehah Samsudin1, Nur Farahin Suhaimi1, Kavirajaa
Pandian Sambasevam1,2*
1Advanced Material for Environmental Remediation (AMER)
Research Group, Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus
Kuala Pilah, 72000 Kuala Pilah, Malaysia
2Electrochemical
Material and Sensor (EMaS) Group,
Universiti
Teknologi MARA,40450 Shah Alam, Selangor, Malaysia
*Corresponding author:
kavirajaa@live.com
Received: 22 July 2021; Accepted: 4 January 2022; Published: 28 April 2022
Abstract
Recent
works on many types of synergistic conducting polymers/tungsten disulfide
(CP/WS2) composites are thoroughly covered in this mini review. Data
were gathered from over 60 scientific research papers from all over the world
and published within the last decade (2012-2021). CPs are as versatile
materials because of their remarkable advantages over other traditional
materials. These advantages include wide and adjustable electrical
conductivity, high mechanical flexibility, high capacitance, and low
manufacturing cost. However, CPs do possess limitations in terms of stability,
processability, and mechanical strength. As a result, CPs are frequently
integrated with inorganic fillers such as metal sulfide. WS2 has
garnered significant attention among metal sulfides when combined with CPs,
where it improves chemical/thermal stability and provide good processability to
the CPs/WS2 composites. Hydrothermal procedures and solvothermal
techniques were all mentioned and discussed as relevant synthesis methods. As a
result, hybridized CP/WS2 composites have shown prospects in terms
of functionality and applicability. Sensors, energy storage, and electrical
applications are among the areas that experienced enhanced performance by using
CP/WS2. A brief discussion of the mechanisms underlying these
successful applications is also included. This mini review is meant to provide
readers with information on CP/WS2 and, as a result, instill
interest in new research topics.
Keywords: conducting
polymer, tungsten disulfide, sensors, supercapacitors, photocatalyst
Abstrak
Terdapat banyak jenis komposit yang
terdiri daripada konduktif polimer/tungsten disulfida (CP/WS2) telah dibincangkan di
dalam ulasan mini ini. Data yang telah dikumpulkan telah diperolehi dari lebih
60 penyelidikan saintifik dari seluruh dunia selama sepuluh tahun sebelumnya.
CP merupakan bahan kimia yang serba boleh kerana mempunyai kelebihan yang luar
biasa berbanding bahan tradisional yang lain, termasuk kekonduksian elektrik yang luas dan boleh
laras, fleksibiliti mekanikal yang tiggi, kapasitans yang tinggi dan kos
pembuatan yang rendah. Walau bagaimanapun, CPs mempunyai batasan dari segi
kestabilan, kebolehkerjaan dan kekuatan mekanikal. Oleh itu, CP sering
digunakan bersama dengan pengisi bukan organik seperti sulfida logam. Di antara
sulfida logam, WS2 telah mendapat perhatian yang signifikan jika
digabungkan dengan CP kerana dapat meningkatkan kestabilan kimia/haba serta
menambahbaik ciri-ciri pemprosesan dalam komposit CP/ WS2. Antara
kaedah sintesis yang relevan yang telah dibincangkan dalam kajian mini ini
adalah proses hidrotermal dan teknik solvotermal. Hasilnya, komposit CP/WS2
yang dihibridisasi telah menunjukkan penningkatan dari segi fungsi dan
kebolehgunaan. Penggunaan CP/WS2 dalam bidang sensor, penyimpanan tenaga dan
aplikasi elektrik dapat meningkatkan keupayaan mereka. Perbincangan ringkas
mengenai mekanisme aplikasi yang berjaya turut disertakan. Akhir sekali, tujuan
kajian mini ini adalah untuk memberi maklumat kepada pembaca mengenai CP/WS2
dan menarik minat mereka untuk menghasilkan suatu kajian penyelidikan yang
baharu.
Kata kunci: konduktif polimer, tungsten
disulfida, pengesan, superkapasitor, fotomangkin
Graphical Abstract
References
1.
Das, T.
K. and Prusty, S. (2012). Review on conducting polymers and their applications.
Polymer - Plastics Technology and Engineering, 51(14): 1487-1500.
2.
Mohd
Norsham, I. N., Baharin, S. N. A., Raoov, M., Shahabuddin, S., Jakmunee, J. and
Sambasevam, K. P. (2020). Optimization of waste quail eggshells as
biocomposites for polyaniline in ammonia gas detection. Polymer Engineering
and Science, 60(12): 1-13.
3.
Sambasevam,
K. P., Mohamad, S. and Phang, S.-W. (2015). Enhancement of polyaniline
properties by different polymerization temperatures in hydrazine detection. Journal
of Applied Polymer Science, 132(13): 41746.
4.
Kumar,
R., Singh, S. and Yadav, B. C. (2016). Conducting polymers: Synthesis,
properties and applications conducting polymers. International Advanced
Research Journal In Science,Engineering and Technology, 2(11):
110-124.
5.
Kaur,
G., Adhikari, R., Cass, P., Bown, M. and Gunatillake, P. (2015). Electrically
conductive polymers and composites for biomedical applications. RSC Advances,
5(47): 37553-37567.
6.
Yu, M.,
Huang, R., He, C., Wu, Q. and Zhao, X. (2016). Hybrid composites from wheat
straw, inorganic filler, and recycled polypropylene: morphology and mechanical
and thermal expansion performance. International Journal of Polymer Science,
2016: 1-12.
7.
Huo, N.,
Yang, S., Wei, Z., Li, S. S., Xia, J. B. and Li, J. (2014). Photoresponsive and
gas sensing field-effect transistors based on multilayer WS2
nanoflakes. Scientific Reports, 4: 1-9.
8.
Ajibade,
P. A. and Mbese, J. Z. (2014). Synthesis and characterization of metal sulfides
nanoparticles/poly(methyl methacrylate) nanocomposites. International
Journal of Polymer Science, 2014: 1-8.
9.
Abdel
Maksoud, M. I. A., Fahim, R. A., Shalan, A. E., Abd Elkodous, M., Olojede, S.
O., Osman, A. I., Farrell, C., Al-Muhtaseb, A. H., Awed, A. S., Ashour, A. H.
and Rooney, D. W. (2021). Advanced materials and technologies for
supercapacitors used in energy conversion and storage: a review. Environmental
Chemistry Letters, 19(1): 375-439.
10.
Ramesan,
M. T. (2013). Synthesis, characterization, and conductivity studies of
polypyrrole/copper sulfide nanocomposites. Journal of Applied Polymer
Science, 128(3): 1540-1546.
11.
Ahmad,
H., Kamarudin, S. K., Minggu, L. J. and Kassim, M. (2015). Hydrogen from
photo-catalytic water splitting process: A review. Renewable and Sustainable
Energy Reviews, 43: 599-610.
12.
Ke, X.,
Dai, K., Zhu, G., Zhang, J. and Liang, C. (2019). In situ photochemical
synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for
boosting photocatalytic H2 production activity. Applied Surface
Science, 481: 669-677.
13.
Takahashi,
A., Tetuko, J. and Hashimoto, K. (2018). Evaluation of friction characteristics
and low friction mechanism of tungsten disulfide for space solid lubricant at
elevated temperature in a vacuum. Proceedings of the 44th
Aerospace Mechanisms Symposium, 2018: pp. 113-126.
14.
Sade, H.
and Lellouche, J. (2018). Preparation and characterization of WS2@SiO2
and WS2@PANI core-shell nanocomposites. Nanomaterials, 8(3):
156.
15.
Li, H.,
Yu, C., Chen, R., Li, J. and Li, J. (2012). Novel ionic liquid-type Gemini
surfactants: Synthesis, surface property and antimicrobial activity. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 395: 116-124.
16.
Chandrasekaran,
S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., Lin, Z., Peng, F. and
Zhang, P. (2019). Recent advances in metal sulfides: from controlled
fabrication to electrocatalytic, photocatalytic and photoelectrochemical water
splitting and beyond. Chemical Society Reviews, 48(15): 4178-4280.
17.
Ashraf,
W., Fatima, T., Srivastava, K. and Khanuja, M. (2019). Superior photocatalytic
activity of tungsten disulfide nanostructures: role of morphology and defects. Applied
Nanoscience, 1(1): 1-15.
18.
Tang,
G., Tang, H., Li, C., Li, W. and Ji, X. (2011). Surfactant-assisted
hydrothermal synthesis and characterization of WS2 nanorods. Materials
Letters, 65(23–24): 3457-3460.
19.
Cao, S.,
Liu, T., Hussain, S., Zeng, W., Pan, F. and Peng, X. (2014). Synthesis and
characterization of novel chrysanthemum-like tungsten disulfide (WS2)
nanostructure: structure, growth and optical absorption property. Journal of
Materials Science: Materials in Electronics, 26(2): 809-814.
20.
Zhang,
D., Liu, T., Cheng, J., Liang, S., Chai, J., Yang, X., Wang, H., Zheng, G. and
Cao, M. (2019). Controllable synthesis and characterization of tungsten
disulfide nanosheets as promising nanomaterials for electronic devices. Ceramics
International, 45(9): 12443-12448.
21.
Sun, S.,
Li, Z. and Chang, X. (2011). Synthesis and structural characterization of
tungsten disulfide nanomaterials. Materials Letters, 65(19-20):
3164-3166.
22.
Ramesan,
M. T. (2013). Synthesis, characterization, and properties of new conducting
polyaniline/copper sulfide nanocomposites. Polymer Engineering and Science,
2013: 1-8.
23.
Flores,
A., Naffakh, M., Díez-Pascual, A. M., Ania, F. and Gómez-Fatou, M. A. (2013).
Evaluating the reinforcement of inorganic fullerene-like nanoparticles in
thermoplastic matrices by depth-sensing indentation. Journal of Physical
Chemistry C, 117(40): 20936-20943.
24.
Li, S.,
Liu, A., Yang, Z., Zhao, L., Wang, J., Liu, F., You, R., He, J., Wang, C., Yan,
X., Sun, P., Liang, X., and Lu, G. (2019). Design and preparation of the WO3
hollow spheres@ PANI conducting films for room temperature flexible NH3
sensing device. Sensors and Actuators B: Chemical, 289: 252-259.
25.
Ma, Y.,
Qiao, M., Hou, C., Chen, Y., Ma, M., Zhang, H. and Zhang, Q. (2015).
Preparation of polyaniline (PANI)-coated Fe3O4
microsphere chains and PANI chain-like hollow spheres without using
surfactants. RSC Advances, 5(125): 103064-103072.
26.
Shyaa,
A. A., Hasan, O. A. and Abbas, A. M. (2015). Synthesis and characterization of
polyaniline/ zeolite nanocomposite for the removal of chromium(VI) from aqueous
solution. Journal of Saudi Chemical Society, 19(1): 101-107.
27.
Prasanna,
B. P., Avadhani, D. N., Muralidhara, H. B., Chaitra, K., Thomas, V. R.,
Revanasiddappa, M. and Kathyayini, N. (2016). Synthesis of polyaniline/ZrO2
nanocomposites and their performance in AC conductivity and electrochemical
supercapacitance. Bulletin of Materials Science, 39(3): 667-675.
28.
Khademian,
M. and Eisazadeh, H. (2015). Preparation and characterization emulsion of
PANI-TiO2 nanocomposite and its application as anticorrosive
coating. Journal of Polymer Engineering, 35(6): 597-603
29.
Jiang,
Feiran, Li, W., Zou, R., Liu, Q., Xu, K., An, L. and Hu, J. (2014). MoO3/PANI
coaxial heterostructure nanobelts by in situ polymerization for high
performance supercapacitors. Nano Energy, 7: 72-79.
30.
Ghani,
S. A. and Young, H. C. (2010). Conductive polymer based on polyaniline-eggshell
powder (PANI-ESP) composites. Journal of Physical Science, 21(2): 81-97.
31.
Manjunatha,
S., Chethan, B., Ravikiran, Y. T. and Machappa, T. (2018). Room temperature
humidity sensor based on polyaniline-tungsten disulfide composite. AIP
Conference Proceedings, 1953.
32.
Wang,
J., Pang, X., Tan, X., Song, Y., Liu, L., You, Q., Sun, Q., Tan, F. and Li, N.
(2017). A triple-synergistic strategy for combinational photo/radiotherapy and
multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated
WS2 nanodots. Nanoscale, 9(17): 5551-5564.
33.
Stejskal,
J., Mrlík, M., Plachý, T., Trchová, M., Kovářová, J. and Li, Y. (2017).
Molybdenum and tungsten disulfides surface-modified with a conducting polymer,
polyaniline, for application in electrorheology. Reactive and Functional
Polymers, 120: 30-37.
34.
Xia, X.,
Hao, Q., Lei, W., Wang, W., Sun, D. and Wang, X. (2012). Nanostructured ternary
composites of graphene/Fe2O3/polyaniline for
high-performance supercapacitors. Journal of Materials Chemistry, 22(33):
16844-16850.
35.
Guo, H.,
Lan, C., Zhou, Z., Sun, P., Wei, D. and Li, C. (2017). Transparent, flexible,
and stretchable WS2 based humidity sensors for electronic skin. Nanoscale,
9(19): 6246-6253.
36.
Kim, S.
J., Hwang, I. S., Kang, Y. C. and Lee, J. H. (2011). Design of selective gas
sensors using additive-loaded In2O3 hollow spheres
prepared by combinatorial hydrothermal reactions. Sensors, 11(11):
10603-10614.
37.
Xu, B.
H., Lin, B. Z., Chen, Z. J., Li, X. L. and Wang, Q. Q. (2009). Preparation and
electrical conductivity of polypyrrole/WS2 layered nanocomposites. Journal
of Colloid and Interface Science, 330(1): 220-226.
38.
Jha, R.
K., Wan, M., Jacob, C., & Guha, P. K. (2018). Ammonia vapour sensing
properties of in situ polymerized conducting PANI-nanofiber/WS2
nanosheet composites. New Journal of Chemistry, 42(1): 735-745.
39.
Liu, G.,
Zhou, Y., Zhu, X., Wang, Y., Ren, H., Wang, Y., Gao, C. and Guo, Y. (2020).
Humidity enhanced ammonia sensing of porous polyaniline/tungsten disulfide
nanocomposite film. Sensors and Actuators B: Chemical, 323: 128699.
40.
Mayorga-Martinez,
C. C., Moo, J. G. S., Khezri, B., Song, P., Fisher, A. C., Sofer, Z. and
Pumera, M. (2016). Self-propelled supercapacitors for on-demand circuit
configuration based on WS2 nanoparticles micromachines. Advanced Functional
Materials, 26(36): 6662-6667.
41.
Stejskal,
J., Acharya, U., Bober, P., Hajná, M., Trchová, M., Mičušík, M., Omastová,
M., Pašti, I. and Gavrilov, N. (2019). Surface modification of tungsten
disulfide with polypyrrole for enhancement of the conductivity and its impact
on hydrogen evolution reaction. Applied Surface Science, 492(5):
497-503.
42.
Kapralova,
V. M., Sapurina, I. Y. and Sudar’, N. T. (2018). Variation in the conductivity
of polyaniline nanotubes during their formation. Semiconductors, 52(6): 816-819.
43.
Stejskal,
J., Sapurina, I. and Trchová, M. (2010). Polyaniline nanostructures and the
role of aniline oligomers in their formation. Progress in Polymer Science,
35(12): 1420-1481.
44.
Hailemeskel,
B. Z., Addisu, K. D., Prasannan, A., Mekuria, S. L., Kao, C. Y. and Tsai, H. C.
(2018). Synthesis and characterization of diselenide linked poly(ethylene
glycol) nanogel as multi-responsive drug carrier. Applied Surface Science,
449: 15-22.
45.
Timko,
B. P. and Kohane, D. S. (2012). Materials to clinical devices: Technologies for
remotely triggered drug delivery. Clinical Therapeutics, 34(11):
S25-S35.
46.
Wu, S.
Y., Chou, H. Y., Yuh, C. H., Mekuria, S. L., Kao, Y. C. and Tsai, H. C. (2018).
Radiation-sensitive dendrimer-based drug delivery system. Advanced Science,
5(2): 1700339.
47.
Hsiao,
P. F., Anbazhagan, R., Tsai, H.-C., Rajakumari krishnamoorthi, Lin, S.-J., Lin,
S.-Y., Lee, K.-Y., Kao, C.-Y., Chen, R.-S. and Lai, J.-Y. (2020). Fabrication
of electroactive polypyrrole-tungsten disulfide nanocomposite for enhanced in
vivo drug release in mice skin. Materials Science and Engineering: C,
107: 110330.
48.
Bubnova,
O., Khan, Z. U., Malti, A., Braun, S., Fahlman, M., Berggren, M. and Crispin,
X. (2011). Optimization of the thermoelectric figure of merit in the conducting
polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 10(6):
429-433.
49.
Jiang,
Fengxing, Xiong, J., Zhou, W., Liu, C., Wang, L., Zhao, F., Liu, H. and Xu, J.
(2016). Use of organic solvent-assisted exfoliated MoS2 for
optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal
of Materials Chemistry A, 4(14): 5265-5273.
50.
Sun, K.,
Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., Isikgor, F. H. and Ouyang, J.
(2015). Review on application of PEDOTs and PEDOT:PSS in energy conversion and
storage devices. Journal of Materials Science: Materials in Electronics,
26(7): 4438-4462.
51.
Wei, Q.,
Mukaida, M., Kirihara, K. and Ishida, T. (2014). Experimental studies on the
anisotropic thermoelectric properties of conducting polymer films. ACS Macro
Letters, 3(9): 948-952.
52.
Wang,
T., Liu, C., Wang, X., Li, X., Jiang, F., Li, C., Hou, J. and Xu, J. (2017).
Highly enhanced thermoelectric performance of WS2 nanosheets upon
embedding PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics,
55(13): 997-1004.
53.
Ortiz,
D. N., Vedrine, J., Pinto, N. J., Naylor, C. H. and Charlie Johnson, A. T.
(2016). Monolayer WS2 crossed with an electro-spun PEDOT-PSS
nano-ribbon: Fabricating a Schottky diode. Materials Science and Engineering
B: Solid-State Materials for Advanced Technology, 214: 68-73.
54.
Kim, M.
S., Yun, S. J., Lee, Y., Seo, C., Han, G. H., Kim, K. K., Lee, Y. H. and Kim,
J. (2016). Biexciton emission from edges and grain boundaries of triangular WS2
monolayers. ACS Nano, 10(2):
2399-2405.
55.
Li, Y.,
Niu, J., Xue, T., Duan, X., Tian, Q., Wen, Y., Lu, X., Xu, J., Lai, L., Chang,
Y., Li, Z., Zhao, X. and Chen, Y. (2020). Multifunctional porous nanohybrid
based on graphene-like tungsten disulfide on poly(3,4-ethoxylenedioxythiophene)
for supercapacitor and electrochemical nanosensing of quercetin. Journal of
The Electrochemical Society, 167(4):
047512.
56.
Liang,
H., Zhang, B. Q. and Song, J. M. (2019). Synthesis of textured tungsten
disulfide nanosheets and their catalysis for benzylamine coupling reaction. ChemCatChem,
11(24): 6288-6294.
57.
Gu, X.,
Cui, W., Li, H., Wu, Z., Zeng, Z., Lee, S. T., Zhang, H. and Sun, B. (2013). A
solution-processed hole extraction layer made from ultrathin MoS2
nanosheets for efficient organic solar cells. Advanced Energy Materials,
3(10): 1262-1268.
58.
Lin, Y.,
Adilbekova, B., Firdaus, Y., Yengel, E., Faber, H., Sajjad, M., Zheng, X.,
Yarali, E., Seitkhan, A., Bakr, O. M., El‐Labban, A., Schwingenschlögl,
U., Tung, V., McCulloch, I., Laquai, F. and Anthopoulos, T. D. (2019). 17%
efficient organic solar cells based on liquid exfoliated WS2 as a
replacement for PEDOT:PSS. Advanced Materials, 31(46): 1902965.
59.
Le, Q.
Van, Nguyen, T. P. and Kim, S. Y. (2014). UV/ozone-treated WS2
hole-extraction layer in organic photovoltaic cells. Physica Status Solidi -
Rapid Research Letters, 8(5):
390-394.
60.
Fukumaru,
T., Toshimitsu, F., Fujigaya, T. and Nakashima, N. (2014). Effects of the
chemical structure of polyfluorene on selective extraction of semiconducting
single-walled carbon nanotubes. Nanoscale, 6(11): 5879-5886.
61.
Di
Luccio, T., Borriello, C., Bruno, A., Maglione, M. G., Minarini, C. and Nenna,
G. (2013). Preparation and characterization of novel nanocomposites of WS2
nanotubes and polyfluorene conductive polymer. Physica Status Solidi (A)
Applications and Materials Science, 210(11):
2278-2283.
62.
Zou, S.
J., Shen, Y., Xie, F. M., Chen, J. De, Li, Y. Q. and Tang, J. X. (2020). Recent
advances in organic light-emitting diodes: Toward smart lighting and displays. Materials
Chemistry Frontiers, 4(3):
788-820.
63.
Ahmad,
M. S., Rahim, N. A., Syed shahabuddin, Mehmood, S. and Khan, A. D. (2021).
Effect of WS2 nano-sheets on the catalytic activity of polyaniline
nano-rods based counter electrode for dye sensitized solar cell. Physica E:
Low-Dimensional Systems and Nanostructures, 126: 114466.
64.
Gopalakrishnan,
K., Sultan, S., Govindaraj, A. and Rao, C. N. R. (2015). Supercapacitors based
on composites of PANI with nanosheets of nitrogen-doped RGO, BC 1.5 N, MoS2
and WS2. Nano Energy, 12:
52-58.
65.
De
Adhikari, A., Shauloff, N., Turkulets, Y., Shalish, I. and Jelinek, R. (2021).
Tungsten-disulfide/polyaniline high frequency supercapacitors. Advanced
Electronic Materials, 7(6): 2100025.
66.
Sunilkumar,
A., Manjunatha, S., Ravikiran, Y. T., Revanasiddappa, M., Prashantkumar, M. and
Machappa, T. (2021). AC conductivity and dielectric studies in polypyrrole
wrapped tungsten disulphide composites. Polymer Bulletin, 2021: 1-17.
67.
Sunilkumar,
A., Manjunatha, S., Machappa, T., Chethan, B. and Ravikiran, Y. T. (2019). A
tungsten disulphide–polypyrrole composite-based humidity sensor at room
temperature. Bulletin of Materials Science, 42(6): 271.
68.
Zhang,
Z., Xu, J., Wen, Y. and Wang, T. (2018). A highly-sensitive VB2
electrochemical sensor based on one-step co-electrodeposited molecularly
imprinted WS2-PEDOT film supported on graphene oxide-SWCNTs
nanocomposite. Materials Science and Engineering: C, 92: 77-87.
69.
Liang,
A., Cai, Y., Wang, J., Xu, L., Zhou, W., Xue, Z., He, Y., Xu, J. and Duan, X.
(2021). Co-electrodeposited porous poplar flower-like
poly(hydroxymethyl-3,4-ethylenedioxythiophene)/ PEG/WS2 hybrid
material for high-performance supercapacitor. Journal of Electroanalytical
Chemistry, 891: 115261.
70.
Liang,
A., Li, D., Zhou, W., Wu, Y., Ye, G., Wu, J., Chang, Y., Wang, R., Xu, J., Nie,
G., Hou, J. and Du, Y. (2018). Robust flexible WS2/PEDOT:PSS film
for use in high-performance miniature supercapacitors. Journal of
Electroanalytical Chemistry, 824:
136-146.
71.
Ben
Ishay, R., Harel, Y., Lavi, R. and Lellouche, J.-P. (2016). Multiple
functionalization of tungsten disulfide inorganic nanotubes by covalently
grafted conductive polythiophenes. RSC Advances, 6(92): 89585-89598.
72.
Raichman,
D., Ben-Shabat Binyamini, R. and Lellouche, J. P. (2016). A new
polythiophene-driven coating method on an inorganic INT/IF-WS2
nanomaterial surface. RSC Advances, 6(6): 4490-4504.