Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 251 - 268

 

 

 

 

 

POTENTIAL APPLICATIONS OF CONDUCTING POLYMER/TUNGSTEN DISULFIDE COMPOSITES: A MINI REVIEW

 

(Aplikasi Potensi Konduktif Polimer/ Tungsten Disulfida komposit: Ulasan Mini)

 

Siti Nor Atika Baharin1, Nur Solehah Samsudin1, Nur Farahin Suhaimi1, Kavirajaa Pandian Sambasevam1,2*

 

1Advanced Material for Environmental Remediation (AMER) Research Group, Faculty of Applied Sciences,

Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Malaysia

2Electrochemical Material and Sensor (EMaS) Group,

Universiti Teknologi MARA,40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  kavirajaa@live.com

 

 

Received: 22 July 2021; Accepted:  4 January 2022; Published:  28 April 2022

 

 

Abstract

Recent works on many types of synergistic conducting polymers/tungsten disulfide (CP/WS2) composites are thoroughly covered in this mini review. Data were gathered from over 60 scientific research papers from all over the world and published within the last decade (2012-2021). CPs are as versatile materials because of their remarkable advantages over other traditional materials. These advantages include wide and adjustable electrical conductivity, high mechanical flexibility, high capacitance, and low manufacturing cost. However, CPs do possess limitations in terms of stability, processability, and mechanical strength. As a result, CPs are frequently integrated with inorganic fillers such as metal sulfide. WS2 has garnered significant attention among metal sulfides when combined with CPs, where it improves chemical/thermal stability and provide good processability to the CPs/WS2 composites. Hydrothermal procedures and solvothermal techniques were all mentioned and discussed as relevant synthesis methods. As a result, hybridized CP/WS2 composites have shown prospects in terms of functionality and applicability. Sensors, energy storage, and electrical applications are among the areas that experienced enhanced performance by using CP/WS2. A brief discussion of the mechanisms underlying these successful applications is also included. This mini review is meant to provide readers with information on CP/WS2 and, as a result, instill interest in new research topics.

 

Keywords:  conducting polymer, tungsten disulfide, sensors, supercapacitors, photocatalyst

 

Abstrak

Terdapat banyak jenis komposit yang terdiri daripada konduktif polimer/tungsten disulfida  (CP/WS2) telah dibincangkan di dalam ulasan mini ini. Data yang telah dikumpulkan telah diperolehi dari lebih 60 penyelidikan saintifik dari seluruh dunia selama sepuluh tahun sebelumnya. CP merupakan bahan kimia yang serba boleh kerana mempunyai kelebihan yang luar biasa berbanding bahan tradisional yang lain, termasuk  kekonduksian elektrik yang luas dan boleh laras, fleksibiliti mekanikal yang tiggi, kapasitans yang tinggi dan kos pembuatan yang rendah. Walau bagaimanapun, CPs mempunyai batasan dari segi kestabilan, kebolehkerjaan dan kekuatan mekanikal. Oleh itu, CP sering digunakan bersama dengan pengisi bukan organik seperti sulfida logam. Di antara sulfida logam, WS2 telah mendapat perhatian yang signifikan jika digabungkan dengan CP kerana dapat meningkatkan kestabilan kimia/haba serta menambahbaik ciri-ciri pemprosesan dalam komposit CP/ WS2. Antara kaedah sintesis yang relevan yang telah dibincangkan dalam kajian mini ini adalah proses hidrotermal dan teknik solvotermal. Hasilnya, komposit CP/WS2 yang dihibridisasi telah menunjukkan penningkatan dari segi fungsi dan kebolehgunaan. Penggunaan  CP/WS2  dalam bidang sensor, penyimpanan tenaga dan aplikasi elektrik dapat meningkatkan keupayaan mereka. Perbincangan ringkas mengenai mekanisme aplikasi yang berjaya turut disertakan. Akhir sekali, tujuan kajian mini ini adalah untuk memberi maklumat kepada pembaca mengenai CP/WS2 dan menarik minat mereka untuk menghasilkan suatu kajian penyelidikan yang baharu.

 

Kata kunci:  konduktif polimer, tungsten disulfida, pengesan, superkapasitor, fotomangkin

 

 


Graphical Abstract

 

 

References

1.      Das, T. K. and Prusty, S. (2012). Review on conducting polymers and their applications. Polymer - Plastics Technology and Engineering, 51(14): 1487-1500.

2.      Mohd Norsham, I. N., Baharin, S. N. A., Raoov, M., Shahabuddin, S., Jakmunee, J. and Sambasevam, K. P. (2020). Optimization of waste quail eggshells as biocomposites for polyaniline in ammonia gas detection. Polymer Engineering and Science, 60(12): 1-13.

3.      Sambasevam, K. P., Mohamad, S. and Phang, S.-W. (2015). Enhancement of polyaniline properties by different polymerization temperatures in hydrazine detection. Journal of Applied Polymer Science, 132(13): 41746.

4.      Kumar, R., Singh, S. and Yadav, B. C. (2016). Conducting polymers: Synthesis, properties and applications conducting polymers. International Advanced Research Journal In Science,Engineering and Technology, 2(11): 110-124.

5.      Kaur, G., Adhikari, R., Cass, P., Bown, M. and Gunatillake, P. (2015). Electrically conductive polymers and composites for biomedical applications. RSC Advances, 5(47): 37553-37567.

6.      Yu, M., Huang, R., He, C., Wu, Q. and Zhao, X. (2016). Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: morphology and mechanical and thermal expansion performance. International Journal of Polymer Science, 2016: 1-12.

7.      Huo, N., Yang, S., Wei, Z., Li, S. S., Xia, J. B. and Li, J. (2014). Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Scientific Reports, 4: 1-9.

8.      Ajibade, P. A. and Mbese, J. Z. (2014). Synthesis and characterization of metal sulfides nanoparticles/poly(methyl methacrylate) nanocomposites. International Journal of Polymer Science, 2014: 1-8.

9.      Abdel Maksoud, M. I. A., Fahim, R. A., Shalan, A. E., Abd Elkodous, M., Olojede, S. O., Osman, A. I., Farrell, C., Al-Muhtaseb, A. H., Awed, A. S., Ashour, A. H. and Rooney, D. W. (2021). Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 19(1): 375-439.

10.   Ramesan, M. T. (2013). Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. Journal of Applied Polymer Science, 128(3): 1540-1546.

11.   Ahmad, H., Kamarudin, S. K., Minggu, L. J. and Kassim, M. (2015). Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews, 43: 599-610.

12.   Ke, X., Dai, K., Zhu, G., Zhang, J. and Liang, C. (2019). In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Applied Surface Science, 481: 669-677.

13.   Takahashi, A., Tetuko, J. and Hashimoto, K. (2018). Evaluation of friction characteristics and low friction mechanism of tungsten disulfide for space solid lubricant at elevated temperature in a vacuum. Proceedings of the 44th Aerospace Mechanisms Symposium, 2018: pp. 113-126.

14.   Sade, H. and Lellouche, J. (2018). Preparation and characterization of WS2@SiO2 and WS2@PANI core-shell nanocomposites. Nanomaterials, 8(3): 156.

15.   Li, H., Yu, C., Chen, R., Li, J. and Li, J. (2012). Novel ionic liquid-type Gemini surfactants: Synthesis, surface property and antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 395: 116-124.

16.   Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., Lin, Z., Peng, F. and Zhang, P. (2019). Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48(15): 4178-4280.

17.   Ashraf, W., Fatima, T., Srivastava, K. and Khanuja, M. (2019). Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects. Applied Nanoscience, 1(1): 1-15.

18.   Tang, G., Tang, H., Li, C., Li, W. and Ji, X. (2011). Surfactant-assisted hydrothermal synthesis and characterization of WS2 nanorods. Materials Letters, 65(23–24): 3457-3460.

19.   Cao, S., Liu, T., Hussain, S., Zeng, W., Pan, F. and Peng, X. (2014). Synthesis and characterization of novel chrysanthemum-like tungsten disulfide (WS2) nanostructure: structure, growth and optical absorption property. Journal of Materials Science: Materials in Electronics, 26(2): 809-814.

20.   Zhang, D., Liu, T., Cheng, J., Liang, S., Chai, J., Yang, X., Wang, H., Zheng, G. and Cao, M. (2019). Controllable synthesis and characterization of tungsten disulfide nanosheets as promising nanomaterials for electronic devices. Ceramics International, 45(9): 12443-12448.

21.   Sun, S., Li, Z. and Chang, X. (2011). Synthesis and structural characterization of tungsten disulfide nanomaterials. Materials Letters, 65(19-20): 3164-3166.

22.   Ramesan, M. T. (2013). Synthesis, characterization, and properties of new conducting polyaniline/copper sulfide nanocomposites. Polymer Engineering and Science, 2013: 1-8.

23.   Flores, A., Naffakh, M., Díez-Pascual, A. M., Ania, F. and Gómez-Fatou, M. A. (2013). Evaluating the reinforcement of inorganic fullerene-like nanoparticles in thermoplastic matrices by depth-sensing indentation. Journal of Physical Chemistry C, 117(40): 20936-20943.

24.   Li, S., Liu, A., Yang, Z., Zhao, L., Wang, J., Liu, F., You, R., He, J., Wang, C., Yan, X., Sun, P., Liang, X., and Lu, G. (2019). Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device. Sensors and Actuators B: Chemical, 289: 252-259.

25.   Ma, Y., Qiao, M., Hou, C., Chen, Y., Ma, M., Zhang, H. and Zhang, Q. (2015). Preparation of polyaniline (PANI)-coated Fe3O4 microsphere chains and PANI chain-like hollow spheres without using surfactants. RSC Advances, 5(125): 103064-103072.

26.   Shyaa, A. A., Hasan, O. A. and Abbas, A. M. (2015). Synthesis and characterization of polyaniline/ zeolite nanocomposite for the removal of chromium(VI) from aqueous solution. Journal of Saudi Chemical Society, 19(1): 101-107.

27.   Prasanna, B. P., Avadhani, D. N., Muralidhara, H. B., Chaitra, K., Thomas, V. R., Revanasiddappa, M. and Kathyayini, N. (2016). Synthesis of polyaniline/ZrO2 nanocomposites and their performance in AC conductivity and electrochemical supercapacitance. Bulletin of Materials Science, 39(3): 667-675.

28.   Khademian, M. and Eisazadeh, H. (2015). Preparation and characterization emulsion of PANI-TiO2 nanocomposite and its application as anticorrosive coating. Journal of Polymer Engineering, 35(6): 597-603

29.   Jiang, Feiran, Li, W., Zou, R., Liu, Q., Xu, K., An, L. and Hu, J. (2014). MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy, 7: 72-79.

30.   Ghani, S. A. and Young, H. C. (2010). Conductive polymer based on polyaniline-eggshell powder (PANI-ESP) composites. Journal of Physical Science, 21(2): 81-97.

31.   Manjunatha, S., Chethan, B., Ravikiran, Y. T. and Machappa, T. (2018). Room temperature humidity sensor based on polyaniline-tungsten disulfide composite. AIP Conference Proceedings, 1953.

32.   Wang, J., Pang, X., Tan, X., Song, Y., Liu, L., You, Q., Sun, Q., Tan, F. and Li, N. (2017). A triple-synergistic strategy for combinational photo/radiotherapy and multi-modality imaging based on hyaluronic acid-hybridized polyaniline-coated WS2 nanodots. Nanoscale, 9(17): 5551-5564.

33.   Stejskal, J., Mrlík, M., Plachý, T., Trchová, M., Kovářová, J. and Li, Y. (2017). Molybdenum and tungsten disulfides surface-modified with a conducting polymer, polyaniline, for application in electrorheology. Reactive and Functional Polymers, 120: 30-37.

34.   Xia, X., Hao, Q., Lei, W., Wang, W., Sun, D. and Wang, X. (2012). Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. Journal of Materials Chemistry, 22(33): 16844-16850.

35.   Guo, H., Lan, C., Zhou, Z., Sun, P., Wei, D. and Li, C. (2017). Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale, 9(19): 6246-6253.

36.   Kim, S. J., Hwang, I. S., Kang, Y. C. and Lee, J. H. (2011). Design of selective gas sensors using additive-loaded In2O3 hollow spheres prepared by combinatorial hydrothermal reactions. Sensors, 11(11): 10603-10614.

37.   Xu, B. H., Lin, B. Z., Chen, Z. J., Li, X. L. and Wang, Q. Q. (2009). Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. Journal of Colloid and Interface Science, 330(1): 220-226.

38.   Jha, R. K., Wan, M., Jacob, C., & Guha, P. K. (2018). Ammonia vapour sensing properties of in situ polymerized conducting PANI-nanofiber/WS2 nanosheet composites. New Journal of Chemistry, 42(1): 735-745.

39.   Liu, G., Zhou, Y., Zhu, X., Wang, Y., Ren, H., Wang, Y., Gao, C. and Guo, Y. (2020). Humidity enhanced ammonia sensing of porous polyaniline/tungsten disulfide nanocomposite film. Sensors and Actuators B: Chemical, 323: 128699.

40.   Mayorga-Martinez, C. C., Moo, J. G. S., Khezri, B., Song, P., Fisher, A. C., Sofer, Z. and Pumera, M. (2016). Self-propelled supercapacitors for on-demand circuit configuration based on WS2 nanoparticles micromachines. Advanced Functional Materials, 26(36): 6662-6667.

41.   Stejskal, J., Acharya, U., Bober, P., Hajná, M., Trchová, M., Mičušík, M., Omastová, M., Pašti, I. and Gavrilov, N. (2019). Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Applied Surface Science, 492(5): 497-503.

42.   Kapralova, V. M., Sapurina, I. Y. and Sudar’, N. T. (2018). Variation in the conductivity of polyaniline nanotubes during their formation. Semiconductors, 52(6): 816-819.

43.   Stejskal, J., Sapurina, I. and Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35(12): 1420-1481.

44.   Hailemeskel, B. Z., Addisu, K. D., Prasannan, A., Mekuria, S. L., Kao, C. Y. and Tsai, H. C. (2018). Synthesis and characterization of diselenide linked poly(ethylene glycol) nanogel as multi-responsive drug carrier. Applied Surface Science, 449: 15-22.

45.   Timko, B. P. and Kohane, D. S. (2012). Materials to clinical devices: Technologies for remotely triggered drug delivery. Clinical Therapeutics, 34(11): S25-S35.

46.   Wu, S. Y., Chou, H. Y., Yuh, C. H., Mekuria, S. L., Kao, Y. C. and Tsai, H. C. (2018). Radiation-sensitive dendrimer-based drug delivery system. Advanced Science, 5(2): 1700339.

47.   Hsiao, P. F., Anbazhagan, R., Tsai, H.-C., Rajakumari krishnamoorthi, Lin, S.-J., Lin, S.-Y., Lee, K.-Y., Kao, C.-Y., Chen, R.-S. and Lai, J.-Y. (2020). Fabrication of electroactive polypyrrole-tungsten disulfide nanocomposite for enhanced in vivo drug release in mice skin. Materials Science and Engineering: C, 107: 110330.

48.   Bubnova, O., Khan, Z. U., Malti, A., Braun, S., Fahlman, M., Berggren, M. and Crispin, X. (2011). Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 10(6): 429-433.

49.   Jiang, Fengxing, Xiong, J., Zhou, W., Liu, C., Wang, L., Zhao, F., Liu, H. and Xu, J. (2016). Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. Journal of Materials Chemistry A, 4(14): 5265-5273.

50.   Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., Isikgor, F. H. and Ouyang, J. (2015). Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 26(7): 4438-4462.

51.   Wei, Q., Mukaida, M., Kirihara, K. and Ishida, T. (2014). Experimental studies on the anisotropic thermoelectric properties of conducting polymer films. ACS Macro Letters, 3(9): 948-952.

52.   Wang, T., Liu, C., Wang, X., Li, X., Jiang, F., Li, C., Hou, J. and Xu, J. (2017). Highly enhanced thermoelectric performance of WS2 nanosheets upon embedding PEDOT:PSS. Journal of Polymer Science, Part B: Polymer Physics, 55(13): 997-1004.

53.   Ortiz, D. N., Vedrine, J., Pinto, N. J., Naylor, C. H. and Charlie Johnson, A. T. (2016). Monolayer WS2 crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 214: 68-73.

54.   Kim, M. S., Yun, S. J., Lee, Y., Seo, C., Han, G. H., Kim, K. K., Lee, Y. H. and Kim, J. (2016). Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 10(2): 2399-2405.

55.   Li, Y., Niu, J., Xue, T., Duan, X., Tian, Q., Wen, Y., Lu, X., Xu, J., Lai, L., Chang, Y., Li, Z., Zhao, X. and Chen, Y. (2020). Multifunctional porous nanohybrid based on graphene-like tungsten disulfide on poly(3,4-ethoxylenedioxythiophene) for supercapacitor and electrochemical nanosensing of quercetin. Journal of The Electrochemical Society, 167(4): 047512.

56.   Liang, H., Zhang, B. Q. and Song, J. M. (2019). Synthesis of textured tungsten disulfide nanosheets and their catalysis for benzylamine coupling reaction. ChemCatChem, 11(24): 6288-6294.

57.   Gu, X., Cui, W., Li, H., Wu, Z., Zeng, Z., Lee, S. T., Zhang, H. and Sun, B. (2013). A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells. Advanced Energy Materials, 3(10): 1262-1268.

58.   Lin, Y., Adilbekova, B., Firdaus, Y., Yengel, E., Faber, H., Sajjad, M., Zheng, X., Yarali, E., Seitkhan, A., Bakr, O. M., El‐Labban, A., Schwingenschlögl, U., Tung, V., McCulloch, I., Laquai, F. and Anthopoulos, T. D. (2019). 17% efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Advanced Materials, 31(46): 1902965.

59.   Le, Q. Van, Nguyen, T. P. and Kim, S. Y. (2014). UV/ozone-treated WS2 hole-extraction layer in organic photovoltaic cells. Physica Status Solidi - Rapid Research Letters, 8(5): 390-394.

60.   Fukumaru, T., Toshimitsu, F., Fujigaya, T. and Nakashima, N. (2014). Effects of the chemical structure of polyfluorene on selective extraction of semiconducting single-walled carbon nanotubes. Nanoscale, 6(11): 5879-5886.

61.   Di Luccio, T., Borriello, C., Bruno, A., Maglione, M. G., Minarini, C. and Nenna, G. (2013). Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Physica Status Solidi (A) Applications and Materials Science, 210(11): 2278-2283.

62.   Zou, S. J., Shen, Y., Xie, F. M., Chen, J. De, Li, Y. Q. and Tang, J. X. (2020). Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Materials Chemistry Frontiers, 4(3): 788-820.

63.   Ahmad, M. S., Rahim, N. A., Syed shahabuddin, Mehmood, S. and Khan, A. D. (2021). Effect of WS2 nano-sheets on the catalytic activity of polyaniline nano-rods based counter electrode for dye sensitized solar cell. Physica E: Low-Dimensional Systems and Nanostructures, 126: 114466.

64.   Gopalakrishnan, K., Sultan, S., Govindaraj, A. and Rao, C. N. R. (2015). Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC 1.5 N, MoS2 and WS2. Nano Energy, 12: 52-58.

65.   De Adhikari, A., Shauloff, N., Turkulets, Y., Shalish, I. and Jelinek, R. (2021). Tungsten-disulfide/polyaniline high frequency supercapacitors. Advanced Electronic Materials, 7(6): 2100025.

66.   Sunilkumar, A., Manjunatha, S., Ravikiran, Y. T., Revanasiddappa, M., Prashantkumar, M. and Machappa, T. (2021). AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites. Polymer Bulletin, 2021: 1-17.

67.   Sunilkumar, A., Manjunatha, S., Machappa, T., Chethan, B. and Ravikiran, Y. T. (2019). A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bulletin of Materials Science, 42(6): 271.

68.   Zhang, Z., Xu, J., Wen, Y. and Wang, T. (2018). A highly-sensitive VB2 electrochemical sensor based on one-step co-electrodeposited molecularly imprinted WS2-PEDOT film supported on graphene oxide-SWCNTs nanocomposite. Materials Science and Engineering: C, 92: 77-87.

69.   Liang, A., Cai, Y., Wang, J., Xu, L., Zhou, W., Xue, Z., He, Y., Xu, J. and Duan, X. (2021). Co-electrodeposited porous poplar flower-like poly(hydroxymethyl-3,4-ethylenedioxythiophene)/ PEG/WS2 hybrid material for high-performance supercapacitor. Journal of Electroanalytical Chemistry, 891: 115261.

70.   Liang, A., Li, D., Zhou, W., Wu, Y., Ye, G., Wu, J., Chang, Y., Wang, R., Xu, J., Nie, G., Hou, J. and Du, Y. (2018). Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. Journal of Electroanalytical Chemistry, 824: 136-146.

71.   Ben Ishay, R., Harel, Y., Lavi, R. and Lellouche, J.-P. (2016). Multiple functionalization of tungsten disulfide inorganic nanotubes by covalently grafted conductive polythiophenes. RSC Advances, 6(92): 89585-89598.

72.   Raichman, D., Ben-Shabat Binyamini, R. and Lellouche, J. P. (2016). A new polythiophene-driven coating method on an inorganic INT/IF-WS2 nanomaterial surface. RSC Advances, 6(6): 4490-4504.