Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 241 - 250
ESTIMATION OF METHANE PRODUCTION VIA ANAEROBIC
CO-DIGESTION OF FOOD WASTE AND SLUDGE BY BIOCHEMICAL METHANE TEST
(Anggaran
Pengeluaran Metana Melalui Pencernaan Bersama Anaerobik Sisa Makanan dan Enap
Cemar oleh Ujian Potensi Metana Biokimia)
Nur Anisah Abdul Latif1,
Zuhaida Mohd Zaki2, Khor Bee Chin3, Faeiza Buyong1*
1Faculty of Applied Sciences,
Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
Malaysia
2Faculty of Civil Engineering,
Universiti Teknologi MARA, 13500 Permatang Pauh, Pulau
Pinang, Malaysia
3Indah Water Konsortium Sdn. Bhd., Damansara Height, 50490 Kuala Lumpur, Malaysia
*Corresponding Author: faeiza@uitm.edu.my
Received: 28 December 2021;
Accepted: 27 February 2022;
Published: 28 April 2022
Abstract
Biochemical methane potential (BMP) tests are
extensively used in many studies related to anaerobic co-digestion (AcoD) to
evaluate biogas production and determine the potential methane yield between
various substrates at specific retention times and parameters. AcoD is a
process of mixing two or more substrates in a digester that could help to
improve the methane yield as compared to mono-digestion with the same
substrates. This study evaluates the methane production efficiency via AcoD of
food waste and thickened sludge by using the BMP tests. The substrates used for
this study were wastes from non-dairy creamer, coffee, and mixed food waste
with sludge. Additionally, thickened sludge as an inoculum was used for the BMP
test. The samples characterisation was analysed according to standard and HACH
methods. The thickened sludge was set up at a ratio of 1:1 as a control, while
the food wastes sample with sludge was set up at a ratio of 1:2. The initial pH
was adjusted in a range of 6.5-7. The BMP test setup was done using a 125mL
serum bottle in triplicates for 31 days in an incubator at 37oC. The
results showed that the highest methane production of the BMP was from
thickened sludge itself which is 18.275 ± 3.3 mL CH4/gVS, followed
by non-dairy creamer waste with thickened sludge, mixed food waste with sludge
and coffee waste with thickened sludge which are 17.865 ± 6.2 mL CH4/gVS,
17.825 ± 0.05 mL CH4/gVS and 14.797 ± 0.01 mL CH4/gVS
respectively. In conclusion, the pre-treatments process is highly recommended
in order to improve biogas production.
Keywords:
anaerobic co-digestion, biochemical methane potential, experimental
methods, food wastes, methane production
Abstrak
Ujian potensi metana
biokimia (BMP) digunakan secara meluas dalam banyak kajian berkaitan
penghadaman bersama anaerobik (AcoD) untuk menilai pengeluaran biogas dan
menentukan potensi hasil metana antara pelbagai substrat pada masa dan
parameter pengekalan tertentu. AcoD merupakan suatu proses mencampurkan dua
atau lebih substrat dalam pencerna yang boleh meningkatkan hasil metana
berbanding mono-pencernaan dengan substrat yang sama. Kajian ini bertujuan
menilai kecekapan pengeluaran metana oleh AcoD bagi sisa makanan dan enap cemar
pekat menggunakan ujian BMP. Substrat yang digunakan untuk kajian ini ialah
sisa daripada krimer bukan tenusu, kopi, dan sisa makanan yang bercampur dengan
enap cemar. Enap cemar pekat digunakan untuk ujian BMP sebagai inokulum. Pencirian
sampel dianalisis mengikut kaedah standard dan HACH. Enap cemar yang menebal
telah disediakan dalam nisbah 1:1 sebagai kawalan, manakala sampel sisa makanan
dengan enap cemar disediakan dalam nisbah 1:2. Nilai pH awal diselaraskan dalam
julat 6.5–7. Persediaan ujian BMP dilakukan menggunakan botol serum 125mL
sebanyak tiga kali ganda selama 31 hari dalam inkubator pada suhu 37oC.
Hasil kajian menunjukkan bahawa pengeluaran metana BMP tertinggi adalah
daripada enap cemar pekat itu sendiri, iaitu 18.275 ± 3.3 mL CH4/gVS,
diikuti sisa krimer bukan tenusu dengan enap cemar pekat, sisa makanan
bercampur dengan enap cemar, dan sisa kopi dengan enap cemar pekat,
masing-masing 17.865 ± 6.2 mL CH4/gVS, 17.825 ± 0.05 mL CH4/gVS,
dan 14.797 ± 0.01 mL CH4/gVS. Kesimpulannya, proses pra-rawatan amat
disyorkan untuk meningkatkan pengeluaran biogas.
Kata kunci: pencernaan
bersama anaerob, potensi metana biokimia, kaedah eksperimen, sisa makanan,
penghasilan metana
Graphical Abstract
References
1.
Werther, J. and Ogada, T. (1999). Sewage sludge
combustion. Progress Energy Combustion, 25: 55-116.
2. Appels,
l., Baeyens, J., Degrève, J. and Dewil, R. (2008). Principles and potential of
the anaerobic digestion of waste-activated sludge. Progress Energy
Combustion, 34: 755-781.
3. Appels, L., Degrève J., Van der Bruggen, B., Van Impe, J.,
and Dewil, R. (2010). Influence of low
temperature thermal pre-treatment
on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource
Technology, 101:
5743-5748.
4. Angelidaki,
D., Karakashev, D.J. Batstone, C.M, Plugge, A.J.M. (2011). Stams,
biomethanation and its potential. Methods in Enzymology, 494: 327-351.
5.
Ward, A. J., Hobbs, P.
J., Holliman, P. J. and Jones, D. L. (2008). Optimization of the anaerobic digestion of agricultural resources. Bioresource
Technology, 99: 7928-7940.
6.
Appels, L., Joost, L., Degrève, J., Helsen, L.,
Lievens, B. and Willems, K. (2011). Anaerobic digestion in global bio-energy
production: potential and research challenges. Renewable Sustainable Energy
Reviews, 15: 4295-4301.
7.
Nasir, I. M., Tinia, I. M. G. and Rozita, O.
(2012). Production of biogas from solid organic wastes through anaerobic
digestion: a review. Applied Microbiology Biotechnology, 95: 321-329.
8.
Zhang, J.,
Wang, Q., Zheng, P. and Wang, Y. (2014). Anaerobic digestion of food waste
stabilized by lime mud from paper-making process. Bioresource Technology,
170: 270-277.
9.
Astals, S.,
Nolla-Ardevol, V. and Mata-Alvarez, J. (2013). Thermophilic co-digestion of pig
manure and crude glycerol: process performance and digestate stability. Journal
of Biotechnology, 166: 97-104.
10.
Chen, J. H., Lin, C. C.
and Wang, K. S. (2013). Potential of methane production by thermophilic
anaerobic co digestion of pulp and paper sludge with pig manure. Journal
Biobased Material Bioenergy, 7: 300-304.
11.
Giuliano, A., Bolzonella,
D., Pavan, P., Cavinato, C. and Cecchi, F. (2013). Co-digestion of livestock
effluents, energy crops and agro-waste: Feeding and process optimization in
mesophilic and thermophilic conditions. Bioresource Technology, 128:
612-618.
12.
Astals, S., Ariso, M.,
Galí, A. and Mata-Alvarez, J. (2011). Co-digestion of pig manure and glycerine:
experimental and modelling study. Journal Environmental Management, 92:
1091-1096.
13.
Fraizer, R. S., Hamilton,
D. and Ndegwa, P. M. (2011). Anaerobic digestion: biogas utilization and
cleanup. Oklahoma Cooperative Extension Service.
14.
Cavinato, C., Fatone, F.,
Bolzonella, D., Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle
manure with agro-wastes and energy crops: comparison of pilot and full scale
experiences. Bioresource Technology, 101:545-50.
15.
Shah, F. A., Mahmood, Q.,
Rashid, N., Pervez, A., Raja, I. A and Shah, M. M. (2015). Co-digestion,
pretreatment and digester design for
enhanced methanogenesis. Renewable Sustainable Energy Reviews, 42: 627-642.
16.
Dedin, F., Rosida, Mulyani, T. and Reshita
Septalia, L. (2016). A comparative study of non-dairy cream based on the type of leguminosae protein
source in terms of physico chemical properties and organoleptic. Agriculture
and Agricultural Science Procedia, 9: 431-439.
17. Huang, X., Lee, E. J.
and Ahn, D.U. (2019). Development of non-dairy creamer analogs/mimics for an
alternative of infant formula using egg white, yolk, and soy proteins. Asian-Australasian
Journal of Animal Sciences, 32(6): 881-890.
18.
Ramesh, C.C, Kilara, A. and Shah, N. P. (2008).
Dairy processing and quality assurance. 1st Edition., Wiley Blackwell Publishing, A. John Wiley and Sons
Inc., New York.
19.
Dewi, E. R. S., Legowo, A. M. and Izzati, M.
(2016). Absorption of organic compounds by Saccharomyces cerevisiae on
industrial waste media. International Journal of Applied Environmental
Science, 11(1): 27-36.
20. Dewi, E. R. S., Legowo,
A. M., Izzati, M. and Purwanto (2016). Kinetic growth of Saccharomyces
cerevisiae in non dairy creamer wastewater medium. Journal of Environmental
Studies, 2(1): 1-5.
21.
Triyaswati, D. and Ilmi, M. (2020).
Lipase-producing filamentous fungi from non-dairy creamer industrial waste. Microbiology and
Biotechnology Letters, 48(2): 167–17.
22.
Navitha, K. and Kousar, H. (2018). A comparative
study on the potential of Aspergillus niger and Aspergillus favus
for the treatment of coffee processing effluent. International Journal
Environmental Ecology Family and Urban Studies, 8(4):17-22.
23.
Sahana, M., Srikantha, H., Mahesh, S. and Swamy,
M.M. (2018). Coffee processing industrial wastewater treatment using batch
electrochemical coagulation with SS and Fe electrodes and its combinations
recovery and reuse of sludge. Water Science Technology, 78: 279-289.
24.
Cardenas, A., Zayas, T., Morales, U. and Salgado,
L. (2009). Electrochemical oxidation of wastewaters from the instant coffee
industry using a dimensionally stable RuIrCoOx anode. ECS Transactions,
20(1): 291-299.
25.
Péerez, T.Z., Geissler, G. and Hernandez, F.
(2007). Chemical oxygen demand reduction in coffee wastewater through chemical
flocculation and advanced oxidation processes. Journal Environmental
Sciences, 19: 300-305.
26.
Remigi, E.U., Buckley,
C.A. (2006). Co-digestion of high strength/toxic organic effluents in anaerobic
digesters at wastewater treatment works; water research commission: Pretoria,
South Africa.
27.
Da Silva, C., Astals, S., Peces, M., Campos, J. L.
and Guerrero, L. (2018). Biochemical methane potential (BMP) tests: Reducing
test time by early parameter estimation. Waste Management, 71: 19-24.
28.
Raposo, M. M. M., Castro, M. C., Belsley, M. and
Fonseca, A. M. C. (2011). Push pull bithiophene azo-chromophores bearing
thiazole and benzothiazole acceptor moieties: Synthesis and evaluation of their
redox and nonlinear optical properties. Dyes Pigments, 91:454-465.
29.
Yan (2014). Romania to develop national strategy
to reduce food waste: Minister. Access from
http://news.xinhuanet.com/english/world/2014-04/01/c_133230744.htm [Accessed
date 03.09.14]
30.
APHA (1998). Standard methods of examination of
water and wastewater. 20th ed. American Water Works Association,
Water Pollution Control Federation, American Public Health Association,
Washington DC.
31.
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi,
L., Campos, J. L., Guwy, A. J. and van Lier, J. B. (2009). Defining the
biomethane potential (BMP) of solid organic wastes and energy crops: a proposed
protocol for batch assays. Water Science and Technology, 59(5): 927-934.
32.
Ramatsa, I., Sibiya, N. and Huberts, R. (2014).
Effect of nutrients addition during anaerobic digestion of potato peels and
maize husk. International Conference on Chemical, Environmental &
Metallurgical Engineering, 2014: pp. 15-16.
33.
Ebner, J. H., Labatut, R. A., Lodge, J. S.,
Williamson, A. A. and Trabold, T. A. (2016). Anaerobic co-digestion of
commercial food waste and dairy manure: Characterizing biochemical parameters
and synergistic effects. Waste Management, 52: 286-294.
34.
Sibiya, N. T., Edison, M. and Habtom, B. T. (2014).
Effect of temperature and pH on the anaerobic digestion of grass silage. International
Conference on Chemical Engineering & Advanced Computational Technologies,
2014: 198-201.
35.
Nielfa, A., Cano, R. and Fdz-Polanco, M.
(2015). Theoretical methane
production generated by the co-digestion of organic fraction municipal solid
waste and biological sludge. Biotechnology
Reports, 5, 14-21.
36.
Turovskiy, I. S. and Mathai, P.K. (2006).
Wastewater sludge processing. New York: Wiley
37.
Cioabla, A. E., Ionel, I., Dumitrel, G.-A. and
Popescu, F. (2012). Comparative study on factors affecting anaerobic digestion
of agricultural vegetal residues. Biotechnology for Biofuels, 5(1): 39.
38.
Lusk, P. (1999). Methane recovery from animal
manures the current opportunities casebook. National Renewable Energy
Laboratory, NREL/SR-580-25145.
39.
Parkin, G. F. and Owen, W. F. (1986). Fundamentals
of anaerobic digestion of wastewater sludges. Journal of Environmental
Engineering, 112: 867-920.
40.
Pearse, L.F., Heittiaratchi, J.P. and Kumar, S.
(2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled
municipal solid waste-a review. Bioresource Technology, 254: 312-324.
41.
Brito, J. O., Barrichello, L. E. G. and Trevisan,
J. F. (1978). Condicoes climaticas e suas influencias sobre a producao de
resinas de pinheiros tropicais, Piracicaba, 16: 37-44
42.
Labatut, R., Angenent, L.T. and Scott, N., (2011).
Biochemical methane potential and biodegradability of complex organic substrates. Bioresource
Technology, 102(3): 2255-2264.
43.
Vassilev, S., Baxter, D., Andersen, L. and
Vassileva, C. (2010). An overview of the chemical composition of biomass. Fuel,
89: 913-933.
44.
Demiral, I. and Ayan, E.A. (2011). Pyrolysis of
grape bagasse: Effect of pyrolysis conditions on the product yields and
characterization of the liquid product. Bioresource Technology, 102:
3946-3951.
45.
Treagust, J. (1994). Coffee waste water treatment.
B.Sc. (Hons.) dissertation. Cranfield, United Kingdom: Cranfield University.
46.
Watershed Protection Plan Development Guidebook
(2015). Description of commonly considered water quality constituents [Access
date 10 October 2015].
47.
Boe, K., Batstone, D. J. and Angelidaki, I.
(2007). An innovative online VFA monitoring system for the anerobic process,
based on headspace gas chromatography. Biotechnology and Bioengineering,
96(4): 712-721.
48.
Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.,
Fonoll, X., Pecesa, M. and Astals, S., (2014). A critical review on anaerobic
co-digestion achievements between 2010 and 2013. Renewable Sustainable
Energy Review, 36: 412-427.
49.
Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu,
B., Chufo, A., Jaffar, M. and Li, X., (2015). Evaluating biomethane production
from anaerobic mono- and co-digestion of food waste and floatable oil (FO)
skimmed from food waste. Bioresource Technology, 185: 7-13.