Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 241 - 250

 

 

 

 

 

ESTIMATION OF METHANE PRODUCTION VIA ANAEROBIC CO-DIGESTION OF FOOD WASTE AND SLUDGE BY BIOCHEMICAL METHANE TEST

 

(Anggaran Pengeluaran Metana Melalui Pencernaan Bersama Anaerobik Sisa Makanan dan Enap Cemar oleh Ujian Potensi Metana Biokimia)

 

Nur Anisah Abdul Latif1, Zuhaida Mohd Zaki2, Khor Bee Chin3, Faeiza Buyong1*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Civil Engineering,

Universiti Teknologi MARA, 13500 Permatang Pauh, Pulau Pinang, Malaysia
3Indah Water Konsortium Sdn. Bhd., Damansara Height, 50490 Kuala Lumpur, Malaysia

 

*Corresponding Author:  faeiza@uitm.edu.my

 

 

Received: 28 December 2021; Accepted:  27 February 2022; Published:  28 April 2022

 

 

Abstract

Biochemical methane potential (BMP) tests are extensively used in many studies related to anaerobic co-digestion (AcoD) to evaluate biogas production and determine the potential methane yield between various substrates at specific retention times and parameters. AcoD is a process of mixing two or more substrates in a digester that could help to improve the methane yield as compared to mono-digestion with the same substrates. This study evaluates the methane production efficiency via AcoD of food waste and thickened sludge by using the BMP tests. The substrates used for this study were wastes from non-dairy creamer, coffee, and mixed food waste with sludge. Additionally, thickened sludge as an inoculum was used for the BMP test. The samples characterisation was analysed according to standard and HACH methods. The thickened sludge was set up at a ratio of 1:1 as a control, while the food wastes sample with sludge was set up at a ratio of 1:2. The initial pH was adjusted in a range of 6.5-7. The BMP test setup was done using a 125mL serum bottle in triplicates for 31 days in an incubator at 37oC. The results showed that the highest methane production of the BMP was from thickened sludge itself which is 18.275 ± 3.3 mL CH4/gVS, followed by non-dairy creamer waste with thickened sludge, mixed food waste with sludge and coffee waste with thickened sludge which are 17.865 ± 6.2 mL CH4/gVS, 17.825 ± 0.05 mL CH4/gVS and 14.797 ± 0.01 mL CH4/gVS respectively. In conclusion, the pre-treatments process is highly recommended in order to improve biogas production.

 

Keywords:  anaerobic co-digestion, biochemical methane potential, experimental methods, food wastes, methane production

 

Abstrak

Ujian potensi metana biokimia (BMP) digunakan secara meluas dalam banyak kajian berkaitan penghadaman bersama anaerobik (AcoD) untuk menilai pengeluaran biogas dan menentukan potensi hasil metana antara pelbagai substrat pada masa dan parameter pengekalan tertentu. AcoD merupakan suatu proses mencampurkan dua atau lebih substrat dalam pencerna yang boleh meningkatkan hasil metana berbanding mono-pencernaan dengan substrat yang sama. Kajian ini bertujuan menilai kecekapan pengeluaran metana oleh AcoD bagi sisa makanan dan enap cemar pekat menggunakan ujian BMP. Substrat yang digunakan untuk kajian ini ialah sisa daripada krimer bukan tenusu, kopi, dan sisa makanan yang bercampur dengan enap cemar. Enap cemar pekat digunakan untuk ujian BMP sebagai inokulum. Pencirian sampel dianalisis mengikut kaedah standard dan HACH. Enap cemar yang menebal telah disediakan dalam nisbah 1:1 sebagai kawalan, manakala sampel sisa makanan dengan enap cemar disediakan dalam nisbah 1:2. Nilai pH awal diselaraskan dalam julat 6.5–7. Persediaan ujian BMP dilakukan menggunakan botol serum 125mL sebanyak tiga kali ganda selama 31 hari dalam inkubator pada suhu 37oC. Hasil kajian menunjukkan bahawa pengeluaran metana BMP tertinggi adalah daripada enap cemar pekat itu sendiri, iaitu 18.275 ± 3.3 mL CH4/gVS, diikuti sisa krimer bukan tenusu dengan enap cemar pekat, sisa makanan bercampur dengan enap cemar, dan sisa kopi dengan enap cemar pekat, masing-masing 17.865 ± 6.2 mL CH4/gVS, 17.825 ± 0.05 mL CH4/gVS, dan 14.797 ± 0.01 mL CH4/gVS. Kesimpulannya, proses pra-rawatan amat disyorkan untuk meningkatkan pengeluaran biogas.

 

Kata kunci:  pencernaan bersama anaerob, potensi metana biokimia, kaedah eksperimen, sisa makanan, penghasilan metana

 

 

 

 


Graphical Abstract

 

References

1.      Werther, J. and Ogada, T. (1999). Sewage sludge combustion. Progress Energy Combustion, 25: 55-116.

2.      Appels, l., Baeyens, J., Degrève, J. and Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress Energy Combustion, 34: 755-781.

3.      Appels, L., Degrève J., Van der Bruggen, B., Van Impe, J., and Dewil, R. (2010). Influence of low  temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technology, 101: 5743-5748.

4.      Angelidaki, D., Karakashev, D.J. Batstone, C.M, Plugge, A.J.M. (2011). Stams, biomethanation and its potential. Methods in Enzymology, 494: 327-351.

5.      Ward, A. J., Hobbs, P. J., Holliman, P. J. and Jones, D. L. (2008). Optimization of the anaerobic     digestion of agricultural resources. Bioresource Technology, 99: 7928-7940.

6.      Appels, L., Joost, L., Degrève, J., Helsen, L., Lievens, B. and Willems, K. (2011). Anaerobic digestion in global bio-energy production: potential and research challenges. Renewable Sustainable Energy Reviews, 15: 4295-4301.

7.      Nasir, I. M., Tinia, I. M. G. and Rozita, O. (2012). Production of biogas from solid organic wastes through anaerobic digestion: a review. Applied Microbiology Biotechnology, 95: 321-329.

8.       Zhang, J., Wang, Q., Zheng, P. and Wang, Y. (2014). Anaerobic digestion of food waste stabilized by lime mud from paper-making process. Bioresource Technology, 170: 270-277.

9.      Astals, S., Nolla-Ardevol, V. and Mata-Alvarez, J. (2013). Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. Journal of Biotechnology, 166: 97-104.

10.   Chen, J. H., Lin, C. C. and Wang, K. S. (2013). Potential of methane production by thermophilic anaerobic co digestion of pulp and paper sludge with pig manure. Journal Biobased Material Bioenergy, 7: 300-304.

11.   Giuliano, A., Bolzonella, D., Pavan, P., Cavinato, C. and Cecchi, F. (2013). Co-digestion of livestock effluents, energy crops and agro-waste: Feeding and process optimization in mesophilic and thermophilic conditions. Bioresource Technology, 128: 612-618.

12.   Astals, S., Ariso, M., Galí, A. and Mata-Alvarez, J. (2011). Co-digestion of pig manure and glycerine: experimental and modelling study. Journal Environmental Management, 92: 1091-1096.

13.   Fraizer, R. S., Hamilton, D. and Ndegwa, P. M. (2011). Anaerobic digestion: biogas utilization and cleanup. Oklahoma Cooperative Extension Service.

14.   Cavinato, C., Fatone, F., Bolzonella, D., Pavan, P. (2010). Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: comparison of pilot and full scale experiences. Bioresource Technology, 101:545-50.

15.   Shah, F. A., Mahmood, Q., Rashid, N., Pervez, A., Raja, I. A and Shah, M. M. (2015). Co-digestion, pretreatment and   digester design for enhanced methanogenesis. Renewable Sustainable Energy Reviews, 42: 627-642.

16.   Dedin, F., Rosida, Mulyani, T. and Reshita Septalia, L. (2016). A comparative study of non-dairy cream   based on the type of leguminosae protein source in terms of physico chemical properties and organoleptic. Agriculture and Agricultural Science Procedia, 9: 431-439.

17.   Huang, X., Lee, E. J. and Ahn, D.U. (2019). Development of non-dairy creamer analogs/mimics for an alternative of infant formula using egg white, yolk, and soy proteins. Asian-Australasian Journal of Animal Sciences, 32(6): 881-890.

18.   Ramesh, C.C, Kilara, A. and Shah, N. P. (2008). Dairy processing and quality assurance. 1st Edition., Wiley  Blackwell Publishing, A. John Wiley and Sons Inc., New York.

19.   Dewi, E. R. S., Legowo, A. M. and Izzati, M. (2016). Absorption of organic compounds by Saccharomyces cerevisiae on industrial waste media. International Journal of Applied Environmental Science, 11(1): 27-36.

20.   Dewi, E. R. S., Legowo, A. M., Izzati, M. and Purwanto (2016). Kinetic growth of Saccharomyces cerevisiae in non dairy creamer wastewater medium. Journal of Environmental Studies, 2(1): 1-5.

21.   Triyaswati, D. and Ilmi, M. (2020). Lipase-producing filamentous fungi from non-dairy creamer    industrial waste. Microbiology and Biotechnology Letters, 48(2): 167–17.

22.   Navitha, K. and Kousar, H. (2018). A comparative study on the potential of Aspergillus niger and Aspergillus favus for the treatment of coffee processing effluent. International Journal Environmental Ecology Family and Urban Studies, 8(4):17-22.

23.   Sahana, M., Srikantha, H., Mahesh, S. and Swamy, M.M. (2018). Coffee processing industrial wastewater treatment using batch electrochemical coagulation with SS and Fe electrodes and its combinations recovery and reuse of sludge. Water Science Technology, 78: 279-289.

24.   Cardenas, A., Zayas, T., Morales, U. and Salgado, L. (2009). Electrochemical oxidation of wastewaters from the instant coffee industry using a dimensionally stable RuIrCoOx anode. ECS Transactions, 20(1): 291-299.

25.   Péerez, T.Z., Geissler, G. and Hernandez, F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. Journal Environmental Sciences, 19: 300-305.

26.   Remigi, E.U., Buckley, C.A. (2006). Co-digestion of high strength/toxic organic effluents in anaerobic digesters at wastewater treatment works; water research commission: Pretoria, South Africa.

27.   Da Silva, C., Astals, S., Peces, M., Campos, J. L. and Guerrero, L. (2018). Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation. Waste Management, 71: 19-24.

28.   Raposo, M. M. M., Castro, M. C., Belsley, M. and Fonseca, A. M. C. (2011). Push pull bithiophene azo-chromophores bearing thiazole and benzothiazole acceptor moieties: Synthesis and evaluation of their redox and nonlinear optical properties. Dyes Pigments, 91:454-465.

29.   Yan (2014). Romania to develop national strategy to reduce food waste: Minister. Access from http://news.xinhuanet.com/english/world/2014-04/01/c_133230744.htm [Accessed date 03.09.14]

30.   APHA (1998). Standard methods of examination of water and wastewater. 20th ed. American Water Works Association, Water Pollution Control Federation, American Public Health Association, Washington DC.

31.   Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J. and van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5): 927-934.

32.   Ramatsa, I., Sibiya, N. and Huberts, R. (2014). Effect of nutrients addition during anaerobic digestion of potato peels and maize husk. International Conference on Chemical, Environmental & Metallurgical Engineering, 2014: pp. 15-16.

33.   Ebner, J. H., Labatut, R. A., Lodge, J. S., Williamson, A. A. and Trabold, T. A. (2016). Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects. Waste Management, 52: 286-294.

34.   Sibiya, N. T., Edison, M. and Habtom, B. T. (2014). Effect of temperature and pH on the anaerobic digestion of grass silage. International Conference on Chemical Engineering & Advanced Computational Technologies, 2014: 198-201.

35.   Nielfa, A., Cano, R. and Fdz-Polanco, M. (2015). Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology Reports, 5, 14-21.

36.   Turovskiy, I. S. and Mathai, P.K. (2006). Wastewater sludge processing. New York: Wiley

37.   Cioabla, A. E., Ionel, I., Dumitrel, G.-A. and Popescu, F. (2012). Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnology for Biofuels, 5(1): 39.

38.   Lusk, P. (1999). Methane recovery from animal manures the current opportunities casebook. National Renewable Energy Laboratory, NREL/SR-580-25145.

39.   Parkin, G. F. and Owen, W. F. (1986). Fundamentals of anaerobic digestion of wastewater sludges. Journal of Environmental Engineering, 112: 867-920.

40.   Pearse, L.F., Heittiaratchi, J.P. and Kumar, S. (2018). Towards developing a representative biochemical  methane potential (BMP) assay for landfilled municipal solid waste-a review. Bioresource Technology, 254: 312-324.

41.   Brito, J. O., Barrichello, L. E. G. and Trevisan, J. F. (1978). Condicoes climaticas e suas influencias sobre a producao de resinas de pinheiros tropicais, Piracicaba, 16: 37-44

42.   Labatut, R., Angenent, L.T. and Scott, N., (2011). Biochemical methane potential and biodegradability of  complex organic substrates. Bioresource Technology, 102(3): 2255-2264.

43.   Vassilev, S., Baxter, D., Andersen, L. and Vassileva, C. (2010). An overview of the chemical composition of biomass. Fuel, 89: 913-933.

44.   Demiral, I. and Ayan, E.A. (2011). Pyrolysis of grape bagasse: Effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresource Technology, 102: 3946-3951.

45.   Treagust, J. (1994). Coffee waste water treatment. B.Sc. (Hons.) dissertation. Cranfield, United Kingdom: Cranfield University.

46.   Watershed Protection Plan Development Guidebook (2015). Description of commonly considered water quality constituents [Access date 10 October 2015].

47.   Boe, K., Batstone, D. J. and Angelidaki, I. (2007). An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnology and Bioengineering, 96(4): 712-721.

48.   Mata-Alvarez, J., Dosta, J., Romero-Güiza, M., Fonoll, X., Pecesa, M. and Astals, S., (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable Sustainable Energy Review, 36: 412-427.

49.   Meng, Y., Li, S., Yuan, H., Zou, D., Liu, Y., Zhu, B., Chufo, A., Jaffar, M. and Li, X., (2015). Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste. Bioresource Technology, 185: 7-13.