Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 202 - 214

 

 

 

 

OPTIMIZATION PARAMETERS FOR ELECTROPOLYMERIZATION OF MELAMINE IN DEEP EUTECTIC SOLVENT

 

(Pengoptimuman Parameter Elektropempolimeran Melamin Dalam Pelarut Eutektik Dalam)

 

Yeet Hoong Chang1, Pei Meng Woi1,2*, Yatimah Alias1,2

 

1Department of Chemistry, Faculty of Science

2University Malaya Centre for Ionic Liquids (UMCiL)

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author:  pmwoi@um.edu.my

 

 

Received: 15 September 2021; Accepted:  10 December 2021; Published:  28 April 2022

 

 

Abstract

Polymelamine is a new class of polymer that possess electrocatalytic behavior in dopamine (DA) detection. Our previous studies have successfully replaced the conventional acidic electrolyte to deep eutectic solvent (DES) has open the opportunity for a greener solvent in used. Herein we report the optimization process of melamine electropolymerize in DES- reline. Various electrochemical techniques have been employed to studies the ideal parameters. The optimum potential window, scan rate, and number of scan cycles were recorded as -0.20 V – 1.60 V,  50 mV s-1 and five scan cycles, respectively. Cyclic voltammetry (CV) was employed in the electropolymerization of melamine to optimize the redox behavior of polymelamine film on electrode surface. The growing of polymer film which indicated by the increased of reduction current can be well-controlled by the slow scan rate and optimum scan cycles which leads to strong adhesion and uniform morphology. Amperometry sensing on DA was performed to study and compare the sensitivity and limit of detection for the polymers synthesized in varied parameters. A brief discussion on the principal polymerization factors that would affecting the electrocatalytic behavior of melamine is included.

 

Keywords:  deep eutectic solvent, electropolymerization, melamine, optimization

 

Abstrak

Polimelamin adalah kelas polimer baharu yang mempunyai tingkah laku elektromangkin dalam pengesanan dopamin (DA). Kajian yang dilaporkan terdahulu menujukkan kerjayaan penggantian elektrolit berasid konvensional kepada pelarut eutektik (DES). Kejayaan ini membuka peluang untuk pelarut yang lebih mesra alam digunakan. Dengan ini, kami melaporkan proses pengoptimum elektropolimerisasi melamin dalam DES-relin. Pelbagai teknik elektrokimia telah digunakan untuk mengkaji parameter yang terbaik. Julat keupayaan, kadar imbasan dan bilangan kitaran imbasan yang terbaik dicatat pada -0.20 V – 1.60 V, 50 mVs-1 dan lima kitaran imbasan. Siklik voltametri (CV) telah digunakan dalam elektropolimerisasi melamin untuk mengoptimumkan tingkah laku elektropemangkinan lapisan polimelamin pada permukaan elektrod. Pertumbuhan lapisan polimer yang ditunjukkan dalam penainkkan arus penurunan boleh dikawal baik dengan kadar imbasan yang perlahan dan kitaran imbasan optimum untuk mencapai lekatan yang kuat dan morfologi yang seragam. Penderiaan amperometri pada DA telah dijalankan untuk mengkaji dan membandingkan kepekaan dan had pengesanan rendah untuk polimer yang disintesis dalam parameter yang berbeza-beza. Perbincangan ringkas tentang faktor-faktor elektropolimerisasi yang mempengaruhi tingkah laku elektromangkin melamin telah disertakan.

 

Kata Kunci:  pelarut eutektik dalam, elektropempolimeran, melamin, pengoptimuman


 


Graphical Abstract



 

 

References

1.      Gupta, P. and Goyal, R. N. (2014). Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta, 120: 17-22.

2.      Kesavan, S., Kumar, D. R., Lee, Y. R. and Shim, J. J. (2017). Determination of tetracycline in the presence of major interference in human urine samples using polymelamine/electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B: Chem, 241: 455-465.

3.      Khosropour, H., Rezaei, B., Alinajafi, H. A. and Ensafi, A. A. (2021). Electrochemical sensor based on glassy carbon electrode modified by polymelamine formaldehyde/graphene oxide nanocomposite for ultrasensitive detection of oxycodone. Microchimica Acta, 188(1): 1.

4.      Farida, A. N., Fitriany, E., Baktir, A., Kurniawan, F. and Harsini, M. (2019). Voltammetric study of ascorbic acid using polymelamine/gold nanoparticle modified carbon paste electrode. IOP Conference Series: Earth Environmental Science, 217: 012004.

5.      Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L. and Qi, Z. (2020). Overview of acidic deep eutectic solvents on synthesis, properties and applications. Green Energy and Environment, 5(1): 8-21.

6.      Zante, G. and Boltoeva, M. (2020). Review on hydrometallurgical recovery of metals with deep eutectic solvents. Sustainable Chemistry, 1(3): 238-255.

7.      Cen, P., Spahiu, K., Tyumentsev, M. S. and Foreman, M. R. S. J. (2020). Metal extraction from a deep eutectic solvent, an insight into activities. Physical Chemistry Chemical Physics, 22(19): 11012-11024.

8.      Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R. L. and Duarte, A. R. C. (2014). Natural deep eutectic solvents – solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2(5): 1063- 1071.

9.      Mendonça, P. V., Lima, M. S., Guliashvili, T., Serra, A. C. and Coelho, J. F. (2017). Deep eutectic solvents (DES): Excellent green solvents for rapid SARA ATRP of biorelevant hydrophilic monomers at ambient temperature. Polymer, 132: 114-121.

10.   Sánchez-Leija, R. J., Torres-Lubián, J. R., Reséndiz-Rubio, A., Luna-Bárcenas, G. and Mota-Morales, J. D. (2016). Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Advances, 6(16): 13072-13079.

11.   Fernandes, P. M. V., Campiña, J. M., Pereira, N. M., Pereira, C. M. and Silva, F. (2012). Biodegradable deep-eutectic mixtures as electrolytes for the electrochemical synthesis of conducting polymers. Journal of Applied Electrochemistry, 42(12): 997-1003.

12.   Mąka, H., Spychaj, T. and Adamus, J. (2015). Lewis acid type deep eutectic solvents as catalysts for epoxy resin crosslinking. RSC Advances, 5(101): 82813-82821.

13.   Chang, Y. H., Woi, P. M. and Alias, Y. B. (2021). Electrochemical characterization of melamine electropolymerized in deep eutectic solvents for selective detection of dopamine. Electrocatalysis, 12(3): 238-250.

14.   Chen, S., Liu, S., Wen, A., Zhang, J., Nie, H., Chen, J., Zeng, R., Long, Y., Jin, Y. and Mai, R. (2018). New insight into electropolymerization of melamine. I: Chloride promoted growth of polymelamine in different pH medium. Electrochimica Acta, 271: 312-318.

15.   Migliorati, V., Sessa, F. and D’Angelo, P. (2019). Deep eutectic solvents: A structural point of view on the role of the cation. Chemical Physics Letters, 2: 100001.

16.   Li, R., Lin, C. W., Shao, Y., Chang, C., Yao, F. K., Kowal, M., Wang, H., Yeung, M., Huang, S. C. and Kaner, R. (2016). Characterization of aniline tetramer by MALDI TOF mass spectrometry upon oxidative and reductive cycling. Polymers, 8(11): 401.

17.   Gabrielli, C., Huet, F. and Keddam, M. (1993). Fluctuations in electrochemical systems. I. General theory on diffusion limited electrochemical reactions. The Journal of Chemical Physics, 99: 7232.