Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 191 - 201

 

 

 

 

A SHORT REVIEW ON THE INFLUENCE OF THE PREPARATION METHOD ON THE PHYSICOCHEMICAL PROPERTIES OF Mg/Al HYDROTALCITE FOR GLUCOSE ISOMERIZATION

 

(Ulasan Ringkas Mengenai Pengaruh Kaedah Penyediaan Terhadap Sifat-Sifat Fizikokimia Mg/Al Hidrotalsit untuk Pengisomerisasi Glukosa)

 

Munirah Zulkifli1,2, Noor Hidayah Pungot1,2*, Nazrizawati Ahmad Tajuddin1, Mohd Fadhlizil Fasihi Mohd Aluwi3, Nor Saliyana Jumali4, Zurina Shaameri1,2

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Organic Synthesis Laboratory, Institute of Science,

Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

3Faculty of Industrial Sciences and Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

4 Department Chemistry, Kulliyyah of Science,

International Islam University Malaysia, 25200 Bandar Indera Mahkota, Kuantan, Pahang, Malaysia

 

*Corresponding author:  noorhidayah977@uitm.edu.my

 

 

Received: 15 September 2021; Accepted: 3 February 2022; Published:  28 April 2022

 

 

Abstract

Hydrotalcite (Mg6Al2(OH)16CO34H2O) is a naturally occurring anionic clay with a layered crystal structure. Hydrotalcites is classified as heterogeneous catalysts that exhibit an excellent separation post-reaction. Furthermore, commercial hydrotalcites are environmentally friendly. Organically synthesised hydrotalcites have attracted numerous researchers. The compounds are crucial solid base materials for several organic reactions, such as the Aldol condensation, Knoevenagel, Claisen-Schmidt, and Michael addition reactions. The present review covers the synthesis of magnesium aluminide (MgAl) hydrotalcites with varying magnesium to aluminium (Mg/Al) molar ratios employed to prepare the catalyst. Additionally, the characterisation of MgAl hydrotalcites with X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM) are highlighted. The instruments were utilised to identify the physicochemical properties of the catalyst, including crystallinity, surface area, and morphology. The catalytic activity of MgAl hydrotalcite was explored in the isomerisation of glucose into fructose as a model reaction for the catalytic performance.  

 

Keywords:  MgAl hydrotalcite, Mg/Al molar ratio, physicochemical properties, catalytic activity

 

Abstrak

Hidrotalsit (Mg6Al2(OH)16CO34H2O) ialah tanah liat anionik yang wujud secara semula jadi dengan struktur kristal berlapis. Hidrotalsit dikelaskan sebagai pemangkin heterogen yang mempamerkan pemisahan selepas tindak balas yang sangat baik. Tambahan pula, hidrotalsit komersial adalah mesra alam. Hidrotalsit yang disintesis secara organik telah menarik ramai penyelidik. Sebatian tersebut merupakan bahan asas pepejal yang penting untuk beberapa tindak balas organik, seperti tindak balas kondensasi Aldol, Knoevenagel, Claisen-Schmidt, dan penambahan Michael. Ulasan semula ini meliputi sintesis magnesium aluminida (MgAl) hidrotalsit dengan pelbagai nisbah molar magnesium kepada aluminium (Mg/Al) digunakan untuk menyediakan mangkin. Selain itu, pencirian hidrotalsit MgAl dengan pembelauan sinar-X (XRD), Brunauer-Emmett-Teller (BET), dan mikroskop elektron pengimbasan (SEM) diserlahkan. Instrumen ini telah digunakan untuk mengenal pasti sifat fizikokimia mangkin, termasuk kehabluran, luas permukaan, dan morfologi. Aktiviti pemangkin hidrotalsit MgAl telah diterokai dalam pengisomeran glukosa kepada fruktosa sebagai tindak balas model untuk prestasi pemangkin.

 

Kata kunci:  MgAl hidrotalsit, nisbah molar Mg/Al, sifat-sifat fizikokimia, aktiviti pemangkin

 

 

 


Graphical Abstract



 

 

References

1.       Dębek, R., Motak, M., Grzybek, T., Galvez, M. E. and Da Costa, P. (2017). A short review on the catalytic activity of hydrotalcite-derived materials for dry reforming of methane. Catalysts, 7(1): 32.

2.       Gomes, J. F. P., Puna, J. F. B., Gonçalves, L. M. and Bordado, J. C. M. (2011). Study on the use of MgAl hydrotalcites as solid heterogeneous catalysts for biodiesel production. Energy36(12): 6770-6778.

3.       Baskaran, T., Christopher, J. and Sakthivel, A. (2015). Progress on layered hydrotalcite (HT) materials as potential support and catalytic materials. RSC Advances, 5: 98853-98875. 

4.       Tsujimura, A., Uchida, M. and Okuwaki, A. (2007). Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound intercalated by chloride ions. Journal of Hazardous Materials143(1–2): 582-586.

5.       Sikander, U., Sufian, S. and Salam, M. A. (2017). A review of hydrotalcite based catalysts for hydrogen production systems. International Journal of Hydrogen Energy, 42: 19851-19868.

6.       Delidovich, I. and Palkovits, R. (2015). Structure-performance correlations of Mg-Al hydrotalcite catalysts for the isomerization of glucose into fructose. Journal of Catalysis327: 1-9.

7.       Lee, G., Kang, J. Y., Yan, N., Suh, Y. W. and Jung, J. C. (2016). Simple preparation method for Mg–Al hydrotalcites as base catalysts. Journal of Molecular Catalysis A: Chemical, 423: 347-355.

8.       Nur Fazira Edlina, I., Nazrizawati, A. T., Erma Hafiza, I. A. Z. and Noraini, H. (2020). MgAl mixed oxide derived alkali-free hydrotalcite for transesterification of waste cooking oil to biodiesel. ASM Science Journal13: 1-7.

9.       Nope, E., Sathicq, G., Martinez, J., Rojas, H., Luque, R. and Romanelli, G. (2018). Hydrotalcites in Organic Synthesis: Multicomponent Reactions. Current Organic Synthesis15(8): 1073-1090.

10.    Kikhtyanin, O., Kadlec, D., Velvarská, R. and Kubička, D. (2018). Using Mg-Al mixed oxide and reconstructed hydrotalcite as basic catalysts for aldol condensation of furfural and cyclohexanone. ChemCatChem10(6): 1464-1475.

11.    Jadhav, A. L. and Yadav, G. D. (2019). Clean synthesis of benzylidenemalononitrile by Knoevenagel condensation of benzaldehyde and malononitrile: Effect of combustion fuel on activity and selectivity of Ti-hydrotalcite and Zn-hydrotalcite catalysts. Journal of Chemical Sciences131(8): 79.

12.    Arias, K. S., Climent, M. J., Corma, A. and Iborra, S. (2016). Chemicals from biomass: Synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Topics in Catalysis59(13–14): 1257-1265.

13.    Mokhtar, M., Saleh, T. S. and Basahel, S. N. (2012). Mg-Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: A green protocol. Journal of Molecular Catalysis A: Chemical353-354: 122-131.

14.    Park, S., Kwon, D., Kang, J. Y. and Jung, J. C. (2019). Influence of the preparation method on the catalytic activity of Mg-Al hydrotalcites as solid base catalysts. Green Energy and Environment, 4(3): 287-292.

15.    Labuschagné, F. J. W. J., Wiid, A., Venter, H. P., Gevers, B. R. and Leuteritz, A. (2018). Green synthesis of hydrotalcite from untreated magnesium oxide and aluminum hydroxide. Green Chemistry Letters and Reviews, 11: 18-28.

16.    Kang, J. Y., Lee, G., Suh, Y. W. and Jung, J. C. (2017). Effect of Mg/Al atomic ratio of Mg–Al hydrotalcites on their catalytic properties for the isomerization of glucose to fructose. Journal of Nanoscience and Nanotechnology, 17(11): 8242-8247.

17.    Yu, S., Kim, E., Park, S., Song, I. K. and Jung, J. C. (2012). Isomerization of glucose into fructose over Mg-Al hydrotalcite catalysts. Catalysis Communications29: 63-67.

18.    Upare, P. P., Chamas, A., Lee, J. H., Kim, J. C., Kwak, S. K., Hwang, Y. K., and Hwang, D. W. (2020). Highly efficient hydrotalcite/1-butanol catalytic system for the production of the high-yield fructose crystal from glucose. ACS Catalysis10(2): 1388-1396.

19.    Huang, H., Meng, X. G., Yu, W. W., Chen, L. Y. and Wu, Y. Y. (2021). High selective isomerization of glucose to fructose catalyzed by amidoximed polyacrylonitrile. ACS Omega6(30): 19860-19866.

20.    Yabushita, M., Shibayama, N., Nakajima, K. and Fukuoka, A. (2019). Selective glucose-to-fructose isomerization in ethanol catalyzed by hydrotalcites. ACS Catalysis9(3): 2101-2109.