Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 215 - 228

 

 

 

 

PREPARATION AND ADSORPTION STUDIES OF MOLECULARLY IMPRINTED POLYMER FOR SELECTIVE RECOGNITION OF TRYPTOPHAN

 

(Penyediaan dan Kajian Penjerapan Polimer Molekul Tercetak untuk Pengecaman Selektif Triptofan)

 

Nur Habibah Safiyah Jusoh1, Faizatul Shimal Mehamod2*, Noor Fadilah Yusof3, Abd Mutalib Md Jani4, Faiz Bukhari Mohd Suah5, Marinah Mohd Ariffin1, Nur Asyiqin Zulkefli1

 

1Faculty of Science and Marine Environment

2Advanced Nano Materials (ANoMA) Research Group, Faculty of Science and Marine Environment

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3School of Chemical and Energy Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia.

4Faculty of Applied Sciences,

Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Perak, Malaysia

5School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

 

*Corresponding author:  fshimal@umt.edu.my

 

 

Received: 13 September 2021; Accepted:  18 December 2021; Published:  28 April 2022

 

 

Abstract

One of the effective technologies in molecular recognition is based on the molecular imprinting process. In this work, the polymers were prepared by bulk polymerization, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and surface area and porosity analyses. Several parameters influencing the adsorption efficiency of Tryptophan (Tryp) such as adsorbent dosage, contact time, pH of sample solution as well as selectivity and reproducibility study, have been evaluated. The Tryptophan-imprinted polymer (Tryp-IP) showed significantly higher removal efficiency and selective binding capacity towards Tryp compared to non-imprinted polymer (NIP). The adsorption isotherm demonstrated that the Tryp-IP followed Langmuir isotherm model, indicating the Tryp-IP owning the homogenous surface type of adsorbent. In contrast, the NIP fit with the Redlich-Peterson model, indicating that mechanism adsorption is a mixed type. The kinetic study revealed that pseudo-second order was the appropriate kinetic model for Tryp-IP and the adsorption kinetic of NIP appeared to fit with pseudo-first order.

 

Keywords:  molecularly imprinted polymer, tryptophan, adsorption study

 

Abstrak

Salah satu teknologi yang efektif dalam pengecaman molekul adalah berdasarkan proses pencetakan molekul. Dalam kajian ini, polimer telah disediakan melalui pempolimeran pukal, masing-masing menggunakan asid metakrilik dan etilena glikol dimetakrilat sebagai monomer berfungsi dan agen tautsilang. Polimer dicirikan oleh spektroskopi inframerah transformasi Fourier, pengimbasan mikroskop elektron dan analisis luas permukaan dan keliangan. Beberapa parameter yang mempengaruhi kecekapan penjerapan Triptofan (Tryp) seperti dos penjerap, masa sentuhan, pH larutan sampel serta kajian selektiviti dan kebolehulangan telah dinilai. Polimer tercetak-Triptofan (Tryp-IP) menunjukkan kecekapan penyingkiran dan kapasiti pengikatan yang lebih tinggi terhadap Tryp berbanding polimer tidak dicetak (NIP). Isoterma penjerapan menunjukkan bahawa Tryp-IP mematuhi model isoterma Langmuir, ini menunjukkan Tryp-IP memiliki jenis penjerap permukaan homogen. Sebaliknya, NIP mematuhi model Redlich-Peterson, menunjukkan mekanisme penjerapan adalah jenis campuran. Kajian kinetik mendedahkan bahawa tertib pseudo-kedua adalah model kinetik yang sesuai untuk Tryp-IP dan kinetik penjerapan NIP kelihatan lebih sesuai dengan tertib pseudo-pertama.

 

Kata kunci:  polimer tercetak molekul, triptofan, kajian penjerapan

 

 

 


Graphical Abstract

 

 


 

References

1.      Friedman, M. (2018). Analysis, nutrition, and health benefits of tryptophan. International Journal of Tryptophan Research, 11: 1178646918802282.

2.      Richard, D. M., Dawes, M. A., Mathias, C. W., Acheson, A., Hill-Kapturczak, N. and Dougherty, D. M. (2009). L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. International Journal of Tryptophan Research, 23(2): 45-60.

3.      Lindseth, G., Helland, B. and Caspers, J. (2015). The effects of dietary tryptophan on affective disorders. Archives of Psychiatric Nursing, 29(2): 102-107.

4.      Jenkins, T. A., Nguyen, J. C. D., Polglaze, K. E. and Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1): 56.

5.    Sundaresan, R., Mariyappan, V., Chen, S.-M., Keerthi, M. and Ramachandran, R. (2021). Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625: 126889.

6.      Capuron, L., Ravaud, A., Neveu, P. J., Miller, A. H., Maes, M. and Dantzer, R. (2002). Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Molecular Psychiatry, 7(5): 468-473.

7.      de Jong, R. A., Nijman, H. W., Boezen, H. M., Volmer, M., Klaske, A., Krijnen, J., van der Zee, A. G. J., Hollema, H. and Kema, I. P. (2011). Serum tryptophan and kynurenine concentrations as parameters for indoleamine 2, 3-dioxygenase activity in patients with endometrial, ovarian, and vulvar cancer. International Journal of Gynecologic Cancer, 21(7): 1320-1327.

8.      Onesti, C. E., Boemer, F., Josse, C., Leduc, S., Bours, V. and Jerusalem, G. (2019). Tryptophan catabolism increases in breast cancer patients compared to healthy controls without affecting the cancer outcome or response to chemotherapy. Journal of Translational Medicine, 17(1): 1-11.

9.      Tian, Y., Deng, P., Wu, Y., Ding, Z., Li, G., Liu, J. and He, Q. (2019). A simple and efficient molecularly imprinted electrochemical sensor for the selective determination of tryptophan. Biomolecules, 9(7): 294.

10.   Jiao, P., Wei, Y., Zhang, M., Zhang, X., Zhang, H. and Yuan, X. (2021). Adsorption separation of l-tryptophan based on the hyper-cross-linked resin XDA-200. ACS Omega, 6(3): 2255-2263.

11.   Lee, D., Hussain, S., Yeo, J. and Pang, Y. (2021). Adsorption of dipeptide L-alanyl-L-tryptophan on gold colloidal nanoparticles studied by surface-enhanced Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247: 119064.

12.   Belhamdi, B., Merzougui, Z., Laksaci, H. and Trari, M. (2019). The removal and adsorption mechanisms of free amino acid l-tryptophan from aqueous solution by biomass-based activated carbon by H3PO4 activation: regeneration study. Physics and Chemistry of the Earth, Parts A/B/C, 114: 102791.

13.   Mehamod, F. S., KuBulat, K., Yusof, N. F. and Othman, N. A. (2015). The development of molecular imprinting technology for caffeine extraction. International Journal of Technology, 6(4): 546-554.

14.   Samarth, N. B., Kamble, V., Mahanwar, P. A., Rane, A. V. and Abitha, V. K. (2015). A historical perspective and the development of molecular imprinting polymer-A review. Chemistry International, 4: 202-210.

15.   Mujahid, A. and Dickert, F. L. (2016). Molecularly Imprinted polymers: principle, design, and enzyme-like catalysis. Molecularly Imprinted Catalysts: Principles, Syntheses, and Applications, pp. 79-101.

16.   Zhang, H., Ye, L. and Mosbach, K. (2006). Non‐covalent molecular imprinting with emphasis on its application in separation and drug development. Journal of Molecular Recognition: An Interdisciplinary Journal, 19(4), 248-259.

17.   Yusof, N. F., Mehamod, F. S., Kadir, M. A. and Suah, F. B. M. (2018). Characteristics of adsorption isotherm and kinetic study for newly prepared Co2+-imprinted polymer linkage with dipicolinic acid. IOP Conference Series: Materials Science and Engineering, 440(1): 012005.

18.   Yusof, N. F., Mehamod, F. S. and Suah, F. B. M. (2018). The effect of RAFT polymerization on the physical properties of thiamphenicol-imprinted polymer. E3S Web of Conferences, 67(12): 03050.

19.   Abdul Hamid, N. S., Naseeruteen, F., Wan Ngah, W. S., Yusof, N. F., Mehamod, F. S. and Mohd Suah, F. B. (2020). Synthesis of chitin-ionic liquid beads as potential adsorbents for methylene blue. Malaysian Journal of Chemistry, 22(2): 98-110.

20.   Yusof, N. F., Mehamod, F. S. and Suah, F. B. M. (2019). Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium. Journal of Environmental Chemical Engineering, 7(2): 103007.

21.   Ayawei, N., Ebelegi, A. N. and Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 2017: 3039817.

22.   Alveroglu, E., Balouch, A., Khan, S., Mahar, A. M., Jagirani, M. S. and Pato, A. H. (2021). Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchemical Journal, 162: 105849.

23.   Fareghi, A. R., Moghadam, P. N., Khalafy, J., Bahram, M. and Moghtader, M. (2017). Preparation of a new molecularly imprinted polymer based on self‐crosslinkable cellulose acrylate in aqueous solution: A drug delivery system for furosemide. Journal of Applied Polymer Science, 134(48): 45581.

24.   Prabakaran, K., Jandas, P. J., Luo, J., Fu, C. and Wei, Q. (2021). Molecularly imprinted poly (methacrylic acid) based QCM biosensor for selective determination of L-tryptophan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 611: 125859.

25.   Azodi-Deilami, S., Abdouss, M. and Seyedi, S. R. (2010). Synthesis and characterization of molecularly imprinted polymer for controlled release of tramadol. Central European Journal of Chemistry, 8(3): 687-695.

26.   Wang, L., Zhi, K., Zhang, Y., Liu, Y., Zhang, L., Yasin, A. and Lin, Q. (2019). Molecularly imprinted polymers for gossypol via sol?gel, bulk, and surface layer imprinting?a comparative study. Polymers, 11(4): 602.

27.   Xia, Q., Yun, Y., Li, Q., Huang, Z. and Liang, Z. (2017). Preparation and characterization of monodisperse molecularly imprinted polymer microspheres by precipitation polymerization for kaempferol. Designed Monomers and Polymers, 20(1): 201-209.

28.   Madikizela, L. M., Zunngu, S. S., Mlunguza, N. Y., Tavengwa, N. T., Mdluli, P. S. and Chimuka, L. (2018). Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water SA, 44(3): 406-418.

29.   Hasanah, A. N., Susanti, I., Marcellino, M., Maranata, G. J., Saputri, F. A. and Pratiwi, R. (2021). Microsphere molecularly imprinted solid-phase extraction for diazepam analysis using itaconic acid as a monomer in propanol. Open Chemistry, 19(1): 604-613.

30.   Yusof, N. F., Mehamod, F. S., & Suah, F. B. M. (2020). Adsorptive removal of bis (2-ethylhexyl) phthalate using an imprinted polymer: isotherm and kinetic modelling. International Journal of Environmental Analytical Chemistry, 2020: 1-12.

31.   Song, S., Wu, A., Shi, X., Li, R., Lin, Z. and Zhang, D. (2008). Development and application of molecularly imprinted polymers as solid-phase sorbents for erythromycin extraction. Analytical and Bioanalytical Chemistry, 390(8): 2141-2150.

32.   Albadarin, A. B., Mangwandi, C., Ala?a, H., Walker, G. M., Allen, S. J. and Ahmad, M. N. M. (2012). Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chemical Engineering Journal, 179: 193-202.

33.   Gomes, C., Sadoyan, G., Dias, R. and Costa, M. R. P. F. N. (2017). Development of molecularly imprinted polymers to target polyphenols present in plant extracts. Processes, 5(4): 72.

34.   Mor, S., Chhoden, K. and Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129: 673-680.

35.   Bakhtiar, S., Bhawani, S. A. and Shafqat, S. R. (2019). Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water. Chemical and Biological Technologies in Agriculture, 6(1): 1-10.

36.   Jin, Y., Liu, C. C., Sun, X. H., Lee, K. J., Jung, Y. A. and Row, K. H. (2012). Adsorption isotherms of tryptophan enantiomer on d-tryptophan molecular imprinted polymer. Asian Journal of Chemistry, 24(6): 2461-2466.

37.   Hameed, B. H., Ahmad, A. L. and Latiff, K. N. A. (2007). Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 75(1): 143-149.

38.   Kumar, V. (2019). Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb2+ ions from aqueous solutions by a hybrid ion-exchanger. Arabian Journal of Chemistry, 12(3): 316-329.

39.   Hasanah, A. N., Dwi Utari, T. N. and Pratiwi, R. (2019). Synthesis of atenolol-imprinted polymers with methyl methacrylate as functional monomer in propanol using bulk and precipitation polymerization method. Journal of Analytical Methods in Chemistry, 2019: 9853620.

40.   Yusof, N. F., Mehamod, F. S., Jusoh, N., Amin, K. A. M. and Suah, F. B. M. (2017). Ion-imprinted polymer-based on picolinic acid as a co-functional monomer for highly selective sorption of Cu(II) ions in an aqueous solution. AIP Conference Proceedings, 1885: 020017.

41.   Abouzarzadeh, A., Forouzani, M., Jahanshahi, M. and Bahramifar, N. (2012). Synthesis and evaluation of uniformly sized nalidixic acid?imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications. Journal of Molecular Recognition, 25(7): 404-413.

42.   Pan, J., Li, L., Hang, H., Ou, H., Zhang, L., Yan, Y. and Shi, W. (2013). Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres. Chemical Engineering Journal, 223: 824-832.

43.   Kong, Y., Zhao, W., Yao, S., Xu, J., Wang, W. and Chen, Z. (2010). Molecularly imprinted polypyrrole prepared by electrodeposition for the selective recognition of tryptophan enantiomers. Journal of Applied Polymer Science, 115(4), 1952-1957.

44.   Monier, M., Abdel-Latif, D. A. and Nassef, H. M. (2015). Preparation of l-tryptophan imprinted microspheres based on carboxylic acid functionalized polystyrene. Journal of Colloid and Interface Science, 445: 371-379.