Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 176 - 190

 

 

 

 

COMPARATIVE STUDY ON VISCOSITIES, STRESS RELAXATION, CURING AND MECHANICAL PROPERTIES OF SEPIOLITE AND SILICA FILLED NATURAL RUBBER COMPOSITES

 

(Kajian Perbandingan Mengenai Kelikatan, Kelonggaran Tekanan, Penyembuhan dan Sifat Mekanikal Komposit Getah Asli dengan Sepiolit dan Silika)

 

Nabil Hayeemasae1,2, Ajaman Adair3, Abdulhakim Masa2,4*

 

1Department of Rubber Technology and Polymer Science, Faculty of Science and Technology

2Research Unit of Advanced Elastomeric Materials for BCG Economy, Faculty of Science and Technology
Prince of Songkla University, Pattani Campus, 94000 Pattani, Thailand

3Department of Cosmetic Science and Beauty, Faculty of Science Technology and Agriculture,
Yala Rajabhat University, 95000 Yala, Thailand

4Rubber Engineering & Technology Program,

 International College, Prince of Songkla University,
90110 Hat Yai, Songkhla, Thailand

 

*Corresponding author:  abdulhakim.m@psu.ac.th

 

 

Received:  1 November 2021; Accepted: 3 February 2022; Published:  28 April 2022

 

 

Abstract

In the present study, natural rubber composites filled with sepiolite and silica were prepared. The effects of the two fillers by loading (1–10 phr) on viscosities, stress relaxation, curing, and mechanical properties of the composites were investigated. Viscosity of rubber usually increased with filler loading about 7–22% with sepiolite and about 3–37% with silica, depending on filler content. Smaller rate of stress relaxation was found with sepiolite filler in comparison with silica filler. Furthermore, shorter curing cycle with greater crosslink density and hot temperature reversion resistance were achieved through the use of sepiolite filler in NR. Lorenz-Parks and Kraus models utilized for assessing rubber-filler interactions revealed stronger interactions of sepiolite filler with the rubber matrix. As a result of the good interactions between sepiolite filler and rubber matrix, larger reinforcement indexes and tensile strengths were achieved with sepiolite filler in comparison with silica filler. This was due to the higher aspect ratio of sepiolite (~5.32) compared to that of silica (~1.09) as demonstrated by SEM analysis. The highest tensile strength was achieved at 1 phr sepiolite loading which was about 17% improvement over unfilled sample.

 

Keywords:  composites, fillers, rubber, sepiolite, silica

 

Abstrak

Komposit getah asli yang diisi dengan sepiolit dan silika telah disediakan dalam kajian ini. Kesan kedua-dua pengisi dengan memuatkan (1-10 phr) pada kelikatan, kelonggaran tekanan, tempoh pematangan dan sifat mekanikal komposit telah disiasat. Kelikatan getah biasanya meningkat dengan pengisi yang memuatkan dari 7-22% dengan sepiolite dan kira-kira 3-37% dengan silika, bergantung kepada kandungan pengisi. Kadar kelonggaran tekanan yang lebih kecil didapati dengan sepiolit berbanding dengan pengisi silika. Juga, tempoh pematangan yang lebih pendek dengan ketumpatan sambung silang yang lebih tinggi dan rintangan perkembalian suhu panas dicapai dengan menggunakan pengisi sepiolit dalam getah asli. Model Lorenz-Parks dan Kraus yang digunakan untuk menilai interaksi pengisi getah mendedahkan interaksi yang lebih kuat dari pengisi sepiolit dengan matriks getah. Indeks pengukuhan yang lebih tinggi dan kekuatan tegangan dicapai dengan pengisi sepiolit daripada pengisi silika. Ini disebabkan oleh interaksi pengisi getah yang lebih baik yang timbul daripada nisbah aspek sepiolit yang lebih tinggi (~ 5.32) daripada silika (~ 1.09) seperti yang kemudiannya didedahkan oleh analisis SEM. Kekuatan tegangan tertinggi dicapai pada 1 phr pemuatan sepiolite iaitu kira-kira 17% peningkatan berbanding sampel yang tidak diisi.

 

Kata kunci:  komposit, pengisi, getah, sepiolit, silika

 

 


Graphical Abstract

 

 

References

1.      Chang, B. P. P., Gupta, A., Muthuraj, R. and Mekonnen, T. (2021). Bioresourced fillers for rubber composites sustainability: current development and future opportunities. Green Chemistry, 23: 5337-5378.

2.      Maslowski, M., Miedzianowska, J. and Strzelec, K. (2019). Natural rubber composites filled with crop residues as an alternative to vulcanizates with common fillers. Polymers, 11(6): 972.

3.      Bokobza, L. (2017). Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. Journal of Carbon Research, 3(2): 10.

4.      Anand, A., Nussana, L., Sham Aan, M. P., Ekwipoo, K., Sangashetty, S. G. and Jobish, J. (2020). Synthesis and characterization of zno nanoparticles and their natural rubber composites. Journal of Macromolecular Science, Part B, 59(11): 697-712.

5.      Bokobza, L. (2019). Natural rubber nanocomposites: a review. Nanomaterials, 9(1): 12. 

6.      Roy, K., Debnath, S. C. and Potiyaraj, P. (2020). A critical review on the utilization of various reinforcement modifiers in filled rubber composites. Journal of Elastomers and Plastics, 52(2): 167-193. 

7.      Bokobza, L. and Chauvin, J. P. (2005). Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer, 46(12): 4144-4151. 

8.      Chen, H., Zheng, M., Sun, H. and Jia, Q. (2007). Characterization and properties of sepiolite/polyurethane nanocomposites. Materials Science and Engineering: A, 445-446: 725-730.

9.      Bokobza, L., Leroy, E. and Lalanne, V. (2009). Effect of filling mixtures of sepiolite and a surface modified fumed silica on the mechanical and swelling behavior of a styrene-butadiene rubber. European Polymer Journal, 45(4): 996-1001.

10.   Zhan, Z., Xu, M. and Li, B. (2015). Synergistic effects of sepiolite on the flame retardant properties and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate composites. Polymer Degradation and Stability, 117: 66-74. 

11.   Zaini, N. A. M., Ismail, H. and Rusli, A. (2018). Thermal, flammability, and morphological properties of sepiolite filled ethylene propylene diene monomer composites. Malaysian Journal of Analytical Sciences, 22(5): 899-905.

12.   Bhattacharya, M., Maiti, M. and Bhowmick, A. K. (2008). Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chemistry and Technology, 81(5): 782-808.

13.   Lowe, D. J., Chapman, A. V., Cook, S. and Busfield, J. J. C. (2011). Natural rubber nanocomposites by in situ modification of clay. Macromolecular Materials and Engineering, 296(8): 693-702.

14.   Winya, N. and Hansupalak, N. (2016). A comparison between the effects of sepiolite and silica on mechanical properties and thermal stability of NR/EPDM blend. MATEC Web of Conferences, 6: 04003. 

15.   Khang, T. H. and Ariff, Z. M. (2012). Vulcanization kinetics study of natural rubber compounds having different formulation variables. Journal of Thermal Analysis and Calorimetry, 109(3): 1545-1553. 

16.   Hayeemasae, N. and Masa, A. (2020). Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates. Polímeros, 30(2): e2020016. 

17.   Lorenz, O. and Parks, C. R. (1961). The crosslinking efficiency of some vulcanizing agents in natural rubber. Journal of Polymer Science, 50(154): 299-312. 

18.   Kraus, G. (1965). Interactions of elastomers and reinforcing fillers. Rubber Chemistry and Technology, 38 (5): 1070-1114. 

19.   Swapna, V. P., Stephen, R., Greeshma, T., Sharan, D. C. and Sreekala, M. S. (2016). Mechanical and swelling behavior of green nanocomposites of natural rubber latex and tubular shaped halloysite nano clay. Polymer Composites, 37(2): 602-611. 

20.   Ellis, B. and Welding, G. N. (1964). Techniques of polymer science. society of the chemical industry, London: pp. 46-46.

21.   Lee, J. Y., Kim, S. M. and Kim, K. J. (2015). Observation of interfacial adhesion in silica-nr compound by using bifunctional silane coupling agent. Polymer Korea, 39(2): 240-246.

22.   Saramolee, P., Sahakaro, K., Lopattananon, N., Dierkes, W. K. and Noordermeer, J. W. (2015). Compatibilization of silica-filled natural rubber compounds by combined effects of functionalized low molecular weight rubber and silane. Journal of Elastomers and Plastics, 48(2): 145-163. 

23.   Mohamad Aini, N. A., Othman, N., Hussin, M. H., Sahakaro, K. and Hayeemasae, N. (2019). Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites. Processes, 7(5): 315. 

24.   Sajjayanukul, T., Saeoui, P. and Sirisinha, C. (2005). Experimental analysis of viscoelastic properties in carbon black-filled natural rubber compounds. Journal of Applied Polymer Science, 97(6): 2197-2203. 

25.   Maria, H. J., Lyczko, N., Nzihou, A., Joseph, K., Mathew, C. and Thomas, S. (2014). Stress relaxation behavior of organically modified montmorillonite filled natural rubber/nitrile rubber nanocomposites. Applied Clay Science, 87: 120-128. 

26.   Gabriel, D., Karbach, A., Drechsler, D., Gutmann, J., Graf, K. and Kheirandish, S. (2016). Bound rubber morphology and loss tangent properties of carbon-black-filled rubber compounds. Colloid and Polymer Science, 294: 501-511. 

27.   Honorato, L., Dias, M. L., Azuma, C. and Nunes, R. C. R. (2016). Rheological properties and curing features of natural rubber compositions filled with Fluoromica ME 100. Polimeros, 26(3): 249-253. 

28.   Mondal, D., Ghorai, S., Rana, D., De, D. and Chattopadhyay, D. (2019). The rubber-filler interaction and reinforcement in styrene butadiene rubber/devulcanize natural rubber composites with silica-graphene oxide. Polymer Composites, 40(S2): E1559-E1572. 

29.   Lopez-Manchado, M. A., Arroyo, M., Herrero, B. and Biagiotti, J. (2003). Vulcanization kinetics of natural rubber-organoclay nanocomposites. Journal of Applied Polymer Science, 89(1): 1-15.

30.   Masa, A., Krem-ae, A., Ismail, H. and Hayeemasae, N. (2020). Possible use of sepiolite as alternative filler for natural rubber. Materials Research, 23(4): e20200100. 

31.   Sridharan, H., Guha, A., Bhattacharyya, S., Bhowmick, A. K. and Mukhopadhyay, R. (2019). Effect of silica loading and coupling agent on wear and fatigue properties of a tread compound. Rubber Chemistry and Technology, 92(2): 326-349.

32.   Ansarifar, M. A., Chugh, J. P. and Haghighat, S. (2000). Effects of silica on the sure properties of some compounds of styrene-butadiene rubber. Iranian Polymer Journal, 9(2): 81-87.

33.   Kok, C. M. (1987). The effects of compounding variables on the reversion process in the sulphur vulcanization of natural rubber. European Polymer Journal, 23(8): 611-615.

34.   Wu, X., Lin, T. F., Tang, Z. H., Guo, B. C. and Huang, G. S. (2015). Natural rubber/graphene oxide composites: effect of sheet size on mechanical properties and strain-induced crystallization behavior. eXPRESS Polymer Letters, 9(8): 672-685.

35.   Ismail, H., Omar, N. F. and Othman, N. (2011). Effect of carbon black loading on curing characteristics and mechanical properties of waste tyre dust/carbon black hybrid filler filled natural rubber compounds. Journal of Applied Polymer Science, 121(2): 1143-1150.

36.   Bhattacharya, M. and Bhowmick, A. K. (2008). Polymer-filler interaction in nanocomposites: New interface area function to investigate swelling behavior and Young's modulus. Polymer, 49(22): 4808-4818.

37.   Kaewsakul, W., Sahakaro, K., Dierkes, W. K. and Noordermeer, J. W. (2013). Optimization of rubber formulation for silica-reinforced natural rubber compounds. Rubber Chemistry and Technology, 86(2): 313 - 329.

38.   Locatelli, D., Pavlovic, N., Barbera, V., Giannini, L. and Galimberti, M. (2020). Sepiolite as reinforcing filler for rubber composites: from the chemical compatibilization to the commercial exploitation. KGK Kautschuk Gummi Kunststoffe, 73: 26-35.

39.   Abdul Salim, Z. A. S., Hassan, A. and Ismail, H. (2018). A review on hybrid fillers in rubber composites. Polymer-Plastics Technology and Engineering, 57(6): 523-539.