Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 176 - 190
COMPARATIVE STUDY ON VISCOSITIES, STRESS
RELAXATION, CURING AND MECHANICAL PROPERTIES OF SEPIOLITE AND SILICA FILLED
NATURAL RUBBER COMPOSITES
(Kajian Perbandingan Mengenai Kelikatan,
Kelonggaran Tekanan, Penyembuhan dan Sifat Mekanikal Komposit Getah Asli dengan
Sepiolit dan Silika)
Nabil Hayeemasae1,2, Ajaman Adair3, Abdulhakim Masa2,4*
1Department of Rubber
Technology and Polymer Science, Faculty of Science and Technology
2Research Unit of
Advanced Elastomeric Materials for BCG Economy, Faculty of Science and
Technology
Prince of Songkla University, Pattani Campus, 94000 Pattani, Thailand
3Department of Cosmetic
Science and Beauty, Faculty of Science Technology and Agriculture,
Yala Rajabhat University, 95000 Yala, Thailand
4Rubber Engineering
& Technology Program,
International College, Prince of Songkla
University,
90110 Hat Yai, Songkhla, Thailand
*Corresponding author: abdulhakim.m@psu.ac.th
Received: 1 November 2021; Accepted: 3 February 2022;
Published: 28 April 2022
Abstract
In the present study, natural rubber composites
filled with sepiolite and silica were prepared. The effects of the two fillers
by loading (1–10 phr) on viscosities, stress relaxation, curing, and mechanical
properties of the composites were investigated. Viscosity of rubber usually
increased with filler loading about 7–22% with sepiolite and about 3–37% with
silica, depending on filler content. Smaller rate of stress relaxation was
found with sepiolite filler in comparison with silica filler. Furthermore,
shorter curing cycle with greater crosslink density and hot temperature
reversion resistance were achieved through the use of sepiolite filler in NR.
Lorenz-Parks and Kraus models utilized for assessing rubber-filler interactions
revealed stronger interactions of sepiolite filler with the rubber matrix. As a
result of the good interactions between sepiolite filler and rubber matrix,
larger reinforcement indexes and tensile strengths were achieved with sepiolite
filler in comparison with silica filler. This was due to the higher aspect
ratio of sepiolite (~5.32) compared to that of silica (~1.09) as demonstrated
by SEM analysis. The highest tensile strength was achieved at 1 phr sepiolite
loading which was about 17% improvement over unfilled sample.
Keywords: composites, fillers, rubber, sepiolite, silica
Abstrak
Komposit
getah asli yang diisi dengan sepiolit dan silika telah disediakan dalam kajian
ini. Kesan kedua-dua pengisi dengan memuatkan (1-10 phr) pada kelikatan,
kelonggaran tekanan, tempoh pematangan dan sifat mekanikal komposit telah
disiasat. Kelikatan getah biasanya meningkat dengan pengisi yang memuatkan dari
7-22% dengan sepiolite dan kira-kira 3-37% dengan silika, bergantung kepada
kandungan pengisi. Kadar kelonggaran tekanan yang lebih kecil didapati dengan
sepiolit berbanding dengan pengisi silika. Juga, tempoh pematangan yang lebih
pendek dengan ketumpatan sambung silang yang lebih tinggi dan rintangan
perkembalian suhu panas dicapai dengan menggunakan pengisi sepiolit dalam getah
asli. Model Lorenz-Parks dan Kraus yang digunakan untuk menilai interaksi
pengisi getah mendedahkan interaksi yang lebih kuat dari pengisi sepiolit
dengan matriks getah. Indeks pengukuhan yang lebih tinggi dan kekuatan tegangan
dicapai dengan pengisi sepiolit daripada pengisi silika. Ini disebabkan oleh
interaksi pengisi getah yang lebih baik yang timbul daripada nisbah aspek
sepiolit yang lebih tinggi (~ 5.32) daripada silika (~ 1.09) seperti yang
kemudiannya didedahkan oleh analisis SEM. Kekuatan tegangan tertinggi dicapai
pada 1 phr pemuatan sepiolite iaitu kira-kira 17% peningkatan berbanding sampel
yang tidak diisi.
Kata
kunci: komposit, pengisi,
getah, sepiolit, silika
Graphical Abstract
References
1.
Chang, B. P. P., Gupta,
A., Muthuraj, R. and Mekonnen, T. (2021). Bioresourced fillers for rubber
composites sustainability: current development and future opportunities. Green
Chemistry, 23: 5337-5378.
2.
Maslowski, M.,
Miedzianowska, J. and Strzelec, K. (2019). Natural rubber composites filled
with crop residues as an alternative to vulcanizates with common fillers. Polymers,
11(6): 972.
3.
Bokobza, L. (2017).
Mechanical and electrical properties of elastomer nanocomposites based on
different carbon nanomaterials. Journal of Carbon Research, 3(2): 10.
4.
Anand, A., Nussana, L.,
Sham Aan, M. P., Ekwipoo, K., Sangashetty, S. G. and Jobish, J. (2020).
Synthesis and characterization of zno nanoparticles and their natural rubber
composites. Journal of Macromolecular Science, Part B, 59(11): 697-712.
5.
Bokobza, L. (2019).
Natural rubber nanocomposites: a review. Nanomaterials, 9(1): 12.
6.
Roy, K., Debnath, S. C.
and Potiyaraj, P. (2020). A critical review on the utilization of various
reinforcement modifiers in filled rubber composites. Journal of Elastomers
and Plastics, 52(2): 167-193.
7.
Bokobza, L. and Chauvin,
J. P. (2005). Reinforcement of natural rubber: use of in situ generated silicas
and nanofibres of sepiolite. Polymer, 46(12): 4144-4151.
8.
Chen, H., Zheng, M., Sun,
H. and Jia, Q. (2007). Characterization and properties of
sepiolite/polyurethane nanocomposites. Materials Science and Engineering: A,
445-446: 725-730.
9.
Bokobza, L., Leroy, E.
and Lalanne, V. (2009). Effect of filling mixtures of sepiolite and a surface
modified fumed silica on the mechanical and swelling behavior of a
styrene-butadiene rubber. European Polymer Journal, 45(4): 996-1001.
10.
Zhan, Z., Xu, M. and Li,
B. (2015). Synergistic effects of sepiolite on the flame retardant properties
and thermal degradation behaviors of polyamide 66/aluminum diethylphosphinate
composites. Polymer Degradation and Stability, 117: 66-74.
11.
Zaini, N. A. M., Ismail,
H. and Rusli, A. (2018). Thermal, flammability, and morphological properties of
sepiolite filled ethylene propylene diene monomer composites. Malaysian
Journal of Analytical Sciences, 22(5): 899-905.
12.
Bhattacharya, M., Maiti,
M. and Bhowmick, A. K. (2008). Influence of different nanofillers and their
dispersion methods on the properties of natural rubber nanocomposites. Rubber
Chemistry and Technology, 81(5): 782-808.
13.
Lowe, D. J., Chapman, A.
V., Cook, S. and Busfield, J. J. C. (2011). Natural rubber nanocomposites by in
situ modification of clay. Macromolecular Materials and Engineering,
296(8): 693-702.
14.
Winya, N. and Hansupalak,
N. (2016). A comparison between the effects of sepiolite and silica on mechanical
properties and thermal stability of NR/EPDM blend. MATEC Web of Conferences,
6: 04003.
15.
Khang, T. H. and Ariff,
Z. M. (2012). Vulcanization kinetics study of natural rubber compounds having
different formulation variables. Journal of Thermal Analysis and
Calorimetry, 109(3): 1545-1553.
16.
Hayeemasae, N. and Masa,
A. (2020). Relationship between stress relaxation behavior and thermal
stability of natural rubber vulcanizates. Polímeros, 30(2):
e2020016.
17.
Lorenz, O. and Parks, C.
R. (1961). The crosslinking efficiency of some vulcanizing agents in natural
rubber. Journal of Polymer Science, 50(154): 299-312.
18.
Kraus, G. (1965).
Interactions of elastomers and reinforcing fillers. Rubber Chemistry and
Technology, 38 (5): 1070-1114.
19.
Swapna, V. P., Stephen,
R., Greeshma, T., Sharan, D. C. and Sreekala, M. S. (2016). Mechanical and
swelling behavior of green nanocomposites of natural rubber latex and tubular
shaped halloysite nano clay. Polymer Composites, 37(2): 602-611.
20.
Ellis, B. and Welding, G.
N. (1964). Techniques of polymer science. society of the chemical industry,
London: pp. 46-46.
21.
Lee, J. Y., Kim, S. M.
and Kim, K. J. (2015). Observation of interfacial adhesion in silica-nr
compound by using bifunctional silane coupling agent. Polymer Korea, 39(2):
240-246.
22.
Saramolee, P., Sahakaro,
K., Lopattananon, N., Dierkes, W. K. and Noordermeer, J. W. (2015).
Compatibilization of silica-filled natural rubber compounds by combined effects
of functionalized low molecular weight rubber and silane. Journal of
Elastomers and Plastics, 48(2): 145-163.
23.
Mohamad Aini, N. A.,
Othman, N., Hussin, M. H., Sahakaro, K. and Hayeemasae, N. (2019).
Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber
composites. Processes, 7(5): 315.
24.
Sajjayanukul, T., Saeoui,
P. and Sirisinha, C. (2005). Experimental analysis of viscoelastic properties
in carbon black-filled natural rubber compounds. Journal of Applied Polymer
Science, 97(6): 2197-2203.
25.
Maria, H. J., Lyczko, N.,
Nzihou, A., Joseph, K., Mathew, C. and Thomas, S. (2014). Stress relaxation
behavior of organically modified montmorillonite filled natural rubber/nitrile
rubber nanocomposites. Applied Clay Science, 87: 120-128.
26.
Gabriel, D., Karbach, A.,
Drechsler, D., Gutmann, J., Graf, K. and Kheirandish, S. (2016). Bound rubber
morphology and loss tangent properties of carbon-black-filled rubber compounds.
Colloid and Polymer Science, 294: 501-511.
27.
Honorato, L., Dias, M.
L., Azuma, C. and Nunes, R. C. R. (2016). Rheological properties and curing
features of natural rubber compositions filled with Fluoromica ME 100. Polimeros,
26(3): 249-253.
28.
Mondal, D., Ghorai, S.,
Rana, D., De, D. and Chattopadhyay, D. (2019). The rubber-filler interaction
and reinforcement in styrene butadiene rubber/devulcanize natural rubber
composites with silica-graphene oxide. Polymer Composites, 40(S2):
E1559-E1572.
29.
Lopez-Manchado, M. A.,
Arroyo, M., Herrero, B. and Biagiotti, J. (2003). Vulcanization kinetics of
natural rubber-organoclay nanocomposites. Journal of Applied Polymer
Science, 89(1): 1-15.
30.
Masa, A., Krem-ae, A.,
Ismail, H. and Hayeemasae, N. (2020). Possible use of sepiolite as alternative
filler for natural rubber. Materials Research, 23(4): e20200100.
31.
Sridharan, H., Guha, A.,
Bhattacharyya, S., Bhowmick, A. K. and Mukhopadhyay, R. (2019). Effect of
silica loading and coupling agent on wear and fatigue properties of a tread
compound. Rubber Chemistry and Technology, 92(2): 326-349.
32.
Ansarifar, M. A., Chugh,
J. P. and Haghighat, S. (2000). Effects of silica on the sure properties of
some compounds of styrene-butadiene rubber. Iranian Polymer Journal,
9(2): 81-87.
33.
Kok, C. M. (1987). The
effects of compounding variables on the reversion process in the sulphur
vulcanization of natural rubber. European Polymer Journal, 23(8):
611-615.
34.
Wu, X., Lin, T. F., Tang,
Z. H., Guo, B. C. and Huang, G. S. (2015). Natural rubber/graphene oxide
composites: effect of sheet size on mechanical properties and strain-induced
crystallization behavior. eXPRESS Polymer Letters, 9(8): 672-685.
35.
Ismail, H., Omar, N. F.
and Othman, N. (2011). Effect of carbon black loading on curing characteristics
and mechanical properties of waste tyre dust/carbon black hybrid filler filled
natural rubber compounds. Journal of Applied Polymer Science, 121(2):
1143-1150.
36.
Bhattacharya, M. and
Bhowmick, A. K. (2008). Polymer-filler interaction in nanocomposites: New
interface area function to investigate swelling behavior and Young's modulus. Polymer,
49(22): 4808-4818.
37.
Kaewsakul, W., Sahakaro,
K., Dierkes, W. K. and Noordermeer, J. W. (2013). Optimization of rubber
formulation for silica-reinforced natural rubber compounds. Rubber Chemistry
and Technology, 86(2): 313 - 329.
38.
Locatelli, D., Pavlovic,
N., Barbera, V., Giannini, L. and Galimberti, M. (2020). Sepiolite as
reinforcing filler for rubber composites: from the chemical compatibilization
to the commercial exploitation. KGK Kautschuk Gummi Kunststoffe, 73:
26-35.
39.
Abdul Salim, Z. A. S.,
Hassan, A. and Ismail, H. (2018). A review on hybrid fillers in rubber
composites. Polymer-Plastics Technology and Engineering, 57(6): 523-539.