Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 384 - 398

 

 

 

 

ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTIONS BY ACTIVATED CARBON PREPARED FROM BANANA TRUNK USING ZINC CHLORIDE ACTIVATION

 

(Penjerapan Metilena Biru daripada Larutan Akueus oleh Karbon Teraktif yang Disediakan dari Batang Pisang secara Pengaktifan Zink Klorida)

 

Zaidi Ab Ghani1*, Muhammad Taufiq Hafizuddin R. Azemi1, Mohd Hafiz Yaacob1, Noor Hafizah Uyup1, Lee Sin Ang1, Nor Azliza Akbar2

 

1Faculty of Applied Science,

Universiti Teknologi MARA Cawangan Perlis, 02600 Arau Perlis, Malaysia.

2School of Civil Engineering, College of Engineering,

Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

 

*Corresponding author:  zaidi433@uitm.edu.my

 

 

Received: 10 September 2021; Accepted: 18 December 2021; Published:  28 April 2022

 

 

Abstract

In this study, the banana trunk-derived activated carbon (BTAC) used was prepared via zinc chloride (ZnCl2) activation. BTAC is used as an adsorbent to remove methylene blue (MB) from the aqueous solutions. The BET surface area, total pore volume and pore diameters of the BTAC were 1329.5 m2/g, 1.16 cm3/g and 3.8 nm, respectively. The effect of adsorbent dosage, initial concentration, contact time and solution pH were studied in batch experiments. The experimental data were analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) adsorption isotherms model. Data analysis study via RMSE and 2 analyses suggested that Temkin isotherm model was the best fitted with the adsorption of MB on BTAC. The maximum monolayer adsorption of MB onto BTAC was calculated to be 217 mg/g. Kinetic parameters were evaluated based on pseudo-first-order (PFO), pseudo-second-order (PSO) and Weber–Morris intraparticle diffusion (IPD) kinetic models. The regression results showed that a PSO model is more accurately representing the adsorption kinetics. While the plot of qt versus t1/2 for the IPD model represented multi-linearity and proved that the adsorption processes occurred more than one step. Thermodynamics parameters were determined between temperatures of 25 to 40 °C. The ΔG° and ΔH° values were negative and the overall adsorption process was determined as spontaneous and exothermic. While the positive value of ΔS° proposed good affinity of the MB molecules toward the BTAC. The results from this study suggested that BTAC could be a viable adsorbent in managing higher concentrations of dyes from water and wastewater.

 

Keywords:  adsorption, activated carbon, methylene blue, isotherm, kinetic

 

Abstrak

Dalam kajian ini, karbon teraktif daripada batang pisang (BTAC) yang digunakan telah disediakan melalui pengaktifan zink klorida (ZnCl2). BTAC telah digunakan sebagai penjerap untuk menyingkirkan metilena biru (MB) daripada larutan akueus. Keluasan permukakaan BET, jumlah isipadu dan diameter liang pori bagi BTAC masing-masing adalah 1329.5 m2/g, 1.16 cm3/g dan 3.8 nm. Kesan dos penjerap, kepekatan permulaan, masa kontak dan pH larutan dilakukan secara eksperimen kelompok. Data ekperimen telah dianalisa menggunakan model Langmuir, Freundlich, Temkin dan Dubinin–Radushkevich. Analisa data kajian melalui RMSE dan 2 mencadangkan bahawa model isoterma Temkin adalah yang paling sesuai dengan penjerapan MB pada BTAC. Penjerapan lapisan-mono maksima MB kepada BTAC dikira sebagai 217 mg/g. Parameter kinetik telah dinilai berdasarkan model kinetik pseudo-pertama (PFO), pseudo-kedua (PSO) dan resapan intrazarah (IPD) Weber–Morris. Hasil regresi menunjukkan bahawa model PSO lebih tepat mewakili kinetik penjerapan. Sementara plot qt melawan t1/2 untuk model IPD menunjukkan garisan linear yang pelbagai dan membuktikan bahawa proses penjerapan berlaku lebih daripada satu langkah. Parameter termodinamik telah ditentukan di antara suhu 25 hingga 40 °C. Nilai ΔG° dan ΔH° adalah negatif, maka keseluruhan proses penjerapan telah ditentukan sebagai spontan dan eksotermik. Sementara itu, nilai positif bagi ΔS° mencadangkan bahawa pertalian yang baik diantara molekul MB terhadap BTAC. Keputusan dari kajian ini mencadangkan bahawa BTAC mampu menjadi penjerap yang berkesan dalam menguruskan kepekatan pewarna yang lebih tinggi dari air dan air sisa.

 

Kata kunci:  penjerapan, karbon teraktif, metilena biru, isoterma, kinetik

 

 

 


Graphical Abstract

 

References

1.      Amran, F. and Zaini, M. A. A. (2021). Sodium hydroxide-activated Casuarina empty fruit: Isotherm, kinetics and thermodynamics of methylene blue and congo red adsorption. Environmental Technology & Innovation, 23: 101727.

2.      Misran, E., Bani, O., Situmeang, E. M. and Purba, A. S. (2022). Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alexandria Engineering Journal, 61(3): 1946-1955.

3.      Wu, J. and Upreti, S. R. (2015). Continuous ozonation of methylene blue in water. Journal of Water Process Engineering, 8: 142-150.

4.    Hoang, N. T. T., Tran, A. T. K., Hoang, M. H., Nguyen, T. T. H. and Bui, X. T. (2021). Synergistic effect of TiO2/chitosan/glycerol photocatalyst on color and COD removal from a dyeing and textile secondary effluent. Environmental Technology & Innovation, 21: 101255.

5.      Singh, J. and Dhaliwal, A. S. (2022). Electrochemical and photocatalytic degradation of methylene blue by using rGO/AgNWs nanocomposite synthesized by electroplating on stainless steel. Journal of Physics and Chemistry of Solids, 160: 110358.

6.      Sahinkaya, E., Sahin, A., Yurtsever, A. and Kitis, M. (2018). Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater. Journal of Environmental Management, 222: 420-427.

7.      Dotto, J., Fagundes-Klen, M. R., Veit, M. T., Palacio, S. M. and Bergamasco, R. (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208: 656-665.

8.  Gnanasekaran, G., Sudhakaran, M. S. P., Kulmatova, D., Han, J., Arthanareeswaran, G., Jwa, E. and Mok, Y. S. (2021). Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere, 284: 131244.

9.    Sinha, A. K., Sasmal, A. K., Pal, A., Pal, D. and Pal, T. (2021). Ammonium phosphomolybdate [(NH4)3PMo12O40] an inorganic ion exchanger for environmental application for purification of dye contaminant wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 418: 113427.

10.   Muniyandi, M. and Govindaraj, P. (2021). Potential removal of Methylene Blue dye from synthetic textile effluent using activated carbon derived from Palmyra (Palm) shell. Materials Today: Proceedings, 47: 299-311.

11.   De Gisi, S., Lofrano, G., Grassi, M. and Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technologies, 9: 10-40.

12.   Alver, E., Metin, A. Ü. and Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154: 104-113.

13.   Rohaizad, A., Shahabuddin, S., Shahid, M. M., Rashid, N. M., Hir, Z. A. M., Ramly, M. M., ... and Aspanut, Z. (2020). Green synthesis of silver nanoparticles from Catharanthus roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye. Journal of Environmental Chemical Engineering, 8(4): 103955.

14.   Arabpour, A., Dan, S. and Hashemipour, H. (2021). Preparation and optimization of novel graphene oxide and adsorption isotherm study of methylene blue. Arabian Journal of Chemistry, 14(3): 103003.

15.   Gemici, B. T., Ozel, H. U. and Ozel, H. B. (2021). Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environmental Technology & Innovation, 22: 101501.

16.   Li, W., Xie, Z., Xue, S., Ye, H., Liu, M., Shi, W. and Liu, Y. (2021). Studies on the adsorption of dyes, Methylene blue, Safranin T, and Malachite green onto Polystyrene foam. Separation and Purification Technology, 276: 119435.

17.   Meili, L., Lins, P. V. S., Costa, M. T., Almeida, R. L., Abud, A. K. S., Soletti, J. I., ... and Erto, A. (2019). Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Progress in Biophysics and Molecular Biology, 141: 60-71.

18.   Shamsabadi, A. S., Bazarganipour, M. and Tavanai, H. (2021). An investigation on the pore characteristics of dates stone based microwave activated carbon nanostructures. Diamond and Related Materials, 120: 108662.

19.   Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M. K., ... and Li, Q. (2022). Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chemical Engineering Journal, 430: 132801.

20.   Khairiah, K., Frida, E., Sebayang, K., Sinuhaji, P. and Humaidi, S. (2021). Data on characterization, model, and adsorption rate of banana peel activated carbon (Musa Acuminata) for adsorbents of various heavy metals (Mn, Pb, Zn, Fe). Data in Brief, 39: 107611.

21.   Salem, S., Teimouri, Z. and Salem, A. (2020). Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Advanced Powder Technology, 31(10): 4301-4309.

22.   Mariana, M., Mistar, E. M., Alfatah, T. and Supardan, M. D. (2021). High-porous activated carbon derived from Myristica fragrans shell using one-step KOH activation for methylene blue adsorption. Bioresource Technology Reports, 16: 100845.

23.   Lewoyehu, M. (2021). Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. Journal of Analytical and Applied Pyrolysis, 159: 105279.

24.   Ab Ghani, Z., Yusoff, M. S., Zaman, N. Q., Zamri, M. F. M. A. and Andas, J. (2017). Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate. Waste Management, 62: 177-187.

25.   Olu-Owolabi, B. I., Diagboya, P. N. and Ebaddan, W. C. (2012). Mechanism of Pb2+ removal from aqueous solution using a nonliving moss biomass. Chemical Engineering Journal, 195: 270-275.

26.   Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J. and Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering5(1): 601-611.

27.   Saif Ur Rehman, M., Kim, I., Rashid, N., Adeel Umer, M., Sajid, M. and Han, J. I. (2016). Adsorption of brilliant green dye on biochar prepared from lignocellulosic bioethanol plant waste. CLEAN–Soil, Air, Water, 44(1): 55-62.

28.   Manna, S., Roy, D., Saha, P., Gopakumar, D. and Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection107, 346-356.

29.   Benhouria, A., Islam, M. A., Zaghouane-Boudiaf, H., Boutahala, M. and Hameed, B. H. (2015). Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for methylene blue. Chemical Engineering Journal, 270: 621-630.

30.   Pathania, D., Sharma, S. and Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10: S1445-S1451.

31.   Li, Z., Wang, G., Zhai, K., He, C., Li, Q. and Guo, P. (2018). Methylene blue adsorption from aqueous solution by loofah sponge-based porous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538: 28-35.

32.   Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C. and Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresource technology, 200: 350-359.

33.   Jawad, A. H., Abdulhameed, A. S., Bahrudin, N. N., Hum, N. N. M. F., Surip, S. N., Syed-Hassan, S. S. A., .. and Sabar, S. (2021). Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Science and Technology, 84(8): 1858-1872.

34.   Hassan, A. F. and Elhadidy, H. (2017). Production of activated carbons from waste carpets and its application in methylene blue adsorption: Kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering5(1): 955-963.

35.   Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L. and McKay, G. (2017). Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106: 191-202.

36.   Banerjee, S. and Chattopadhyaya, M. C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10: S1629-S1638.

37.   Ezechi, E. H., bin Mohamed Kutty, S. R., Malakahmad, A. and Isa, M. H. (2015). Characterization and optimization of effluent dye removal using a new low cost adsorbent: Equilibrium, kinetics and thermodynamic study. Process Safety and Environmental Protection, 98: 16-32.

38.   Abbas, M. and Trari, M. (2015). Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Safety and Environmental Protection, 98: 424-436.

39.   Nnadozie, E. C. and Ajibade, P. A. (2020). Adsorption, kinetic and mechanistic studies of Pb (II) and Cr (VI) ions using APTES functionalized magnetic biochar. Microporous and Mesoporous Materials, 309: 110573.

40.   Ahmad, M. A., Puad, N. A. A. and Bello, O. S. (2014). Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resources and industry, 6: 18-35.

41.   Zhang, Z., Xu, L., Liu, Y., Feng, R., Zou, T., Zhang, Y., ... and Zhou, P. (2021). Efficient removal of methylene blue using the mesoporous activated carbon obtained from mangosteen peel wastes: Kinetic, equilibrium, and thermodynamic studies. Microporous and Mesoporous Materials, 315: 110904.

42.   Kumar, A. and Jena, H. M. (2016). Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. Journal of Cleaner Production, 137: 1246-1259.

43.   Subbaiah, M. V. and Kim, D. S. (2016). Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128: 109-117.

44.   Khosravi, M. and Azizian, S. (2014). Adsorption of anionic dyes from aqueous solution by iron oxide nanospheres. Journal of Industrial and Engineering Chemistry, 20(4): 2561-2567.

45.   Zhu, C. S., Wang, L. P. and Chen, W. B. (2009). Removal of Cu (II) from aqueous solution by agricultural by-product: peanut hull. Journal of Hazardous Materials, 168(2-3): 739-746.

46.   Shin, H. S. and Kim, J. H. (2016). Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochemistry, 51(7): 917-924.

47.   Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O. and Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286: 476-484.

48.   Ghani, Z. A., Yusoff, M. S., Zaman, N. Q., Andas, J. and Aziz, H. A. (2017). Adsorptive removal of dissolved organic matter (DOM) in landfill leachate by iron oxide nanoparticles (FeONPs). AIP Conference Proceedings, 1892: 040016.