Malaysian
Journal of Analytical Sciences Vol 26 No 2
(2022): 370 - 383
CHEMICAL CHARACTERISATION OF BIOCHAR FROM
OIL PALM FROND FOR PALM OIL MILL SECONDARY EFFLUENT TREATMENT
Analisis
Sifat Kimia Biochar Daripada Pelepah Kelapa Sawit Untuk Rawatan Air Sisa
Sekunder Kilang Pemprosesan Kelapa Sawit
Nadia
Razali and Nurhanim Zulaikha Kamarulzaman*
Section of Environmental and Polymer
Engineering Technology,
Malaysian Institute of Chemical and
Bioengineering Technology (MICET,
Universiti Kuala Limpur, 78000 Alor
Gajah, Melaka, Malaysia
*Corresponding author: nurhanim.kamarulzaman@s.unikl.edu.my
Received: 15 September 2021; Accepted: 3 February 2022;
Published: 28 April 2022
Abstract
The oil palm frond
(OPF) biomass contains chemical characteristics, which makes it a potential
alternative adsorbent in wastewater treatment applications. In this study, the
OPF sample was produced as biochar by using a top-lit updraft (TLUD) gasifier.
The maximum temperature of this process was 750 oC and it yielded 20% w/w of
biochar. The Brunauer Emmett Teller (BET) surface area for the OPF biochar was
248.08 m2/g with an average pore size of 4.3 nm and categorised as
mesoporous adsorbent. The OPF biochar had a high carbon content of more than 70%,
which was desirable for the alternative adsorbent. It was discovered that the
aromatic ring and aliphatic functional group was detected in the biochar based
on the Fourier Transform Infrared (FTIR) analysis which was commonly found in
biochar produced at temperatures above 500 oC. Based on the result obtained from
the adsorption test, the OPT biochar could provide a maximum removal of 64.65%
of COD, with an initial COD of 3960 mg/L. This study has found that the OPF
biochar is suitable to be used as an alternative adsorbent for wastewater
applications.
Keywords: biochar, oil palm
frond, adsorption, palm oil mill effluent
Abstrak
Pelepah
kelapa sawit (OPF) mempunyai sifat kimia yang berpotensi sebagai bahan penjerap
alternatif dalam aplikasi rawatan air sisa. Dalam kajian ini, sampel OPF
digunakan sebagai bahan mentah untuk menghasilkan biochar dengan menggunakan gasifier
top-lit updraft (TLUD). Suhu maksimum process ini adalah 750 oC dan 20% w/w
biochar telah dihasilkan. Luas permukaan Brunauer Emmett Teller (BET) untuk
biochar OPF adalah 248.08 m2/g dengan ukuran purata saiz pori 4.3 nm
dan diketagorikan sebagai penjerap mesoporos. Biochar OPF mempunyai kandungan
karbon yang tinggi melebihi daripada 70%, yang merupakan ciri-ciri yang dikehendaki
untuk penjerap alternatif. Berdasarkan analisis spektroskopi inframerah
transformasi Fourier (FTIR), kumpulan organik alifatik dan cincin aromatik
dikesan didalam bahan ini. Kumpulan organik ini biasanya ditemui dalam biochar
yang dihasilkan pada suhu melebihi 500 oC. Berdasarkan hasil kajian yang
diperolehi daripada ujian penjerapan, biochar OPT mampu memberikan
menyingkirkan 64.65% COD daripada air sisa kilang kelapa sawit yang mempunyai
COD awal sebanyak 3650 mg/L. Kajian ini mendapati bahawa biochar OPF wajar digunakan
sebagai penjerap altenatif untuk rawatan sisa pepejal.
Kata kunci: biochar,
pelepah kelapa sawit, penjerapan, sisa efluen kilang kelapa sawit
Graphical Abstract
References
1. Ghulam Kadir, A. P. (2020). Overview of the
malaysian oil palm industry 2020. In Malaysian Palm Oil Board website. Access
from https://www.mpob.gov. [Accessed Jun. 14, 2021].
2. Tan, Z. Y. (2020). Green technology: Time to
Tap Biomass. The Edge Markets. https://www.theedgemarkets.com/article/green-technology-time-tap-biomass
[Accessed Jun. 14, 2021].
3. Zwart, R. (2013). Sustainability in the
cultivation of oil palm issues and prospects for the industry. Journal of
Oil Palm and the Environment, 4(5): 41-62.
4. Malaysian Department of Environment (2009).
Environmental quality (industrial effluent) regulations 2009. In Environmental
Quality Act 1974 (pp. 4010-4059). Access from https://www.doe.gov.my/ portalv1/wpcontent/uploads/2015/01/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_
434-2009.pdf.
5. Zainuri, N. Z., Hairom, N. H. H., Sidik, D. A.
B., Desa, A. L., Misdan, N., Yusof, N. and Mohammad, A. W. (2018). Palm oil
mill secondary effluent (POMSE) treatment via photocatalysis process in presence
of ZnO-PEG nanoparticles. Journal of Water Process Engineering,
26:10-16.
6. Zahrim, A. Y., Nasimah, A. and Hilal, N.
(2014). Pollutants analysis during conventional palm oil mill effluent (POME)
ponding system and decolourisation of anaerobically treated POME via calcium
lactate-polyacrylamide. Journal of Water Process Engineering, 2014:
159-165.
7. Ngeno, E. C., Orata, F., Baraza, L. D.,
Shikuku, V. O. and Kimosop, S. J. (2016). Adsorption of caffeine and
ciprofloxacin onto pyrolitically derived water hyacinth biochar: isothermal,
kinetic and thermodynamic studies. Journal of Chemistry and Chemical Engineering,
10(4): 185-194.
8. Sia, Y. Y., Tan, I. A. W. and Abdullah, M. O.
(2017). Adsorption of colour, TSS and COD from palm oil mill effluent (POME)
using acid-washed coconut shell activated carbon: Kinetic and mechanism
studies. MATEC Web of Conferences, 87:1-7.
9. Chin, M. J., Poh, P. E., Tey, B. T., Chan, E.
S. and Chin, K. L. (2013). Biogas from palm oil mill effluent (POME):
Opportunities and challenges from Malaysia's perspective. Renewable and
Sustainable Energy Reviews, 26: 717-726.
10. Mukherjee, I. and Sovacool, B. K. (2014). Palm
oil-based biofuels and sustainability in Southeast Asia: A review of Indonesia,
Malaysia, And Thailand. Renewable and Sustainable Energy Reviews, 37:
1-12.
11. Umar, M. S., Jennings, P. and Urmee, T. (2013).
Strengthening the palm oil biomass renewable energy industry in Malaysia. Renewable
Energy, 60; 107-115.
12. Hansen, V., Muller-Stover, D., Ahrenfeldt, J.,
Holm, J. K., Henriksen, U. B. and Hauggaard-Nielsen, H. (2015). Gasification
biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass
and Bioenergy, 72: 300-308.
13. Shen, Y. (2015). Chars as carbonaceous
adsorbents/catalysts for tar elimination during biomass pyrolysis or
gasification. Renewable and Sustainable Energy Reviews, 43: 281-295.
14. Hosseini, S. E., Wahid, M. A. and Ganjehkaviri,
A. (2015). An overview of renewable hydrogen production from thermochemical
process of oil palm solid waste in Malaysia. Energy Conversion and
Management, 94: 415-429.
15. Anukam, A., Mamphweli, S., Reddy, P., Meyer, E.
and Okoh, O. (2016). Pre-processing of sugarcane bagasse for gasification in a
downdraft biomass gasifier system: A comprehensive review. Renewable and
Sustainable Energy Reviews, 66: 775-801.
16. Couto, N., Rouboa, A., Silva, V., Monteiro, E.
and Bouziane, K. (2013). Influence of the biomass gasification processes on the
final composition of syngas. Energy Procedia, 36:596-606.
17. Huggins, T. M., Haeger, A., Biffinger, J. C.
and Ren, Z. J. (2016). Granular biochar compared with activated carbon for
wastewater treatment and resource recovery. Water Research, 94: 225-232
18. Kearns, J., Anh, M. T. L., Reents, N. W.,
Shimabuku, K. K., Mahoney, R. B., Summers, R. S. and Knappe, D. R. U. (2014).
Trace organic contaminant removal from drinking water using local char. 37th
WEDC International Conference, 2014: pp. 1-6.
19. Kaetzl, K., Lubken, M., Uzun, G., Gehring, T.,
Nettmann, E., Stenchly, K. and Wichern, M. (2019). On-farm wastewater treatment
using biochar from local agro residues reduces pathogens from irrigation water
for safer food production in developing countries. Science of the Total
Environment, 682: 601-610.
20. Thompson, K. A., Shimabuku, K. K., Kearns, J.
P., Knappe, D. R. U., Summers, R. S. and Cook, S. M. (2016). Environmental
comparison of biochar and activated carbon for tertiary wastewater treatment. Environmental
Science & Technology, 50(20): 11253-11262.
21. Zhang, F., Wang, X., Yin, D., Peng, B., Tan,
C., Liu, Y., Tan, X. and Wu, S. (2015). Efficiency and mechanisms of Cd removal
from aqueous solution by biochar derived from water hyacinth (Eichornia
crassipes). Journal of Environmental Management, 153: 68-73.
22. Han, R., Wang, Y., Zhoa, X., Wang, Y., Xie, F.,
Cheng, J. and Tang, Mi. (2009). Adsorption of methylene blue by phoenix tree
leaf powder in a fixed-bed column: Experiments and prediction of breakthrough
curves. Desalination, 245(1-3): 284-297.
23. Enaime, G., Bacaoui, A., Yaacoubi, A. and
Lubken, M. (2020). Biochar for wastewater treatment-conversion technologies and
applications. Applied Sciences, 10: 1-29.
24. Wang, X., Guo, Z., Hu, Z. and Zhang, J. (2020).
Recent advances in biochar application for water and wastewater treatment: A
review. PeerJ, 8: 1-34.
25. Oliveira, F. R., Patel, A. K., Jaisi, D. P.,
Adhikari, S., Lu, H. and Khanal, S. K. (2017). Environmental application of
biochar: Current status and perspectives. Bioresource Technology, 246:
110-122.
26. Nsamba, H. K., Hale, S. E., Cornelissen, G. and
Bachmann, R. T. (2014). Improved gasification of rice husks for optimized
biochar production in a top lit updraft gasifier. Journal of Sustainable
Bioenergy Systems, 4: 225-242.
27. James, R. A. M., Yuan, W. and Boyette, M. D.
(2016). The effect of biomass physical properties on top-lit updraft
gasification of woodchips. Energies, 9(4): 1-13.
28. You, S., Ok, Y. S., Chen, S. S., Tsang, D. C.
W., Kwon, E. E., Lee, J. and Wang, C. H. (2017). A critical review on sustainable
biochar system through gasification: energy and environmental applications. Bioresource
Technology, 246: 242-253.
29. Mohan, D., Sarswat, A., Sik, Y. and Pittman, C.
U. (2014). Organic and inorganic contaminants removal from water with biochar,
a renewable, low cost and sustainable adsorbent - a critical review. Bioresource
Technology, 160: 191-202.
30. Ahmad, M., Rajapaksha, A. U., Lim, J. E.,
Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Sik Ok, Y.
(2014). Biochar as a sorbent for contaminant management in soil and water: A
review. Chemosphere, 99: 19-33.
31. Rahman, A. A., Abdullah, N. and Sulaiman, F. (2014).
Temperature effect on the characterization of pyrolysis products from oil palm
fronds. Advances in Energy Engineering, 2: 14-21.
32. Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M.,
Zhou, Y., Chen, H. and Yang, L. (2014). Effects of feedstock type, production
method, and pyrolysis temperature on biochar and hydrochar properties. Chemical
Engineering Journal, 240: 574-578.
33. Tran, H. and Yuan, C. (2016). Effect of
pyrolyisis temperatures and times in adsorption of cadmium onto orange peel
derived biochar. Waste Management & Research, 34(2): 129-138.
34. Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X.
and Gu, Y. (2015). Application of biochar for the removal of pollutants from
aqueous solutions. Chemosphere, 125: 70-85.
35. Mojiri, A., Ziyang, L., Tajuddin, R. M.,
Farraji, H. and Alifar, N. (2016). Co-treatment of landfill leachate and
municipal wastewater using the ZELIAC/Zeolite constructed wetland system. Journal
of Environmental Management, 166: 124-130.
36. Lam, S. S., Liew, R. K., Cheng, C. K., Rasit,
N., Ooi, C. K., Ma, N. L., Ng, J. H., Lam, W. H., Chong, C. T. and Chase, H. A.
(2018). Pyrolysis production of fruit peel biochar for potential use in treatment
of palm oil mill effluent. Journal of Environmental Management, 213: 400-408.
37. Angın, D. (2012). Effect of pyrolysis
temperature and heating rate on biochar obtained from pyrolysis of safflower
seed press cake. Bioresource Technology, 128: 593-597.
38. Usman, A. R. A., Abduljabbar, A., Vithanage,
M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., &
Al-Wabel, M. I. (2015). Biochar Production from Date Palm Waste: Charring
Temperature Induced Changes in Composition and Surface Chemistry. Journal of
Analytical and Applied Pyrolysis, 115: 392-400.
39. Mahmood, W. M. F. W., Ariffin, M. A., Harun,
Z., Ishak, N. A. I., Ghani, J. A. and Rahman, M. N. A. (2014). Characterisation
and potential use of biochar from gasified oil palm wastes. Journal of
Engineering Science and Technology, 45-54.
40. Suarez-Hernandez, L., Ardila-A, A. N. and Barrera-Zapata,
R. (2017). Morphological And physicochemical characterization of biochar
produced by gasification of selected forestry species. Revista Facultad de
Ingenier?a, 26(46): 123-130.
41. Feng, D., Zhao, Y., Zhang, Y., Sun, S. and Gao,
J. (2018). Steam gasification of sawdust biochar influenced by chemical
speciation of alkali and alkaline earth metallic species. Energies,
11(1): 205.
42. Shen, Y. (2015). Chars as carbonaceous
adsorbents/catalysts for tar elimination during biomass pyrolysis or
gasification. Renewable and Sustainable Energy Reviews, 43: 281-295.
43. Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim,
K. H. and Park, S. (2013). Activated carbon from biochar: influence of its physicochemical
properties on the sorption characteristics of phenanthrene. Bioresource
Technology, 149: 383-389.
44. Liew, R. K., Nam, W. L., Chong, M. Y., Phang,
X. Y., Su, M. H., Yek, P. N. Y., Ma, N. L., Cheng, C. K., Chong, C. T. and Lam,
S. S. (2017). Oil palm waste: An abundant and promising feedstock for microwave
pyrolysis conversion into good quality biochar with potential
multi-applications. Process Safety and Environmental Protection, 2017:
1-13.
45. Domingues, R. R., Trugilho, P. F., Silva, C. A.,
de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M. and Sanchez-Monedero, M.
A. (2017). Properties of biochar derived from wood and high-nutrient biomasses
with the aim of agronomic and environmental benefits. PLoS ONE, 12(5):
1-19.
46. Klasson, K. T. (2017). Biochar characterization
and a method for estimating biochar quality from proximate analysis results. Biomass
and Bioenergy, 96: 50-58.
47. Wijitkosum, S. and Jiwnok, P. (2019). Elemental
composition of biochar obtained from agricultural waste for soil amendment and
carbon sequestration. Applied Sciences, 9(19): 3980.
48. Wei, L., Huang, Y., Huang, L., Li, Y., Huang,
Q., Xu, G., Muller, K., Wang, H., Ok, Y. S. and Liu, Z. (2020). The ratio of
H/C is a useful parameter to predict adsorption of the herbicide metolachlor to
biochars. Environmental Research, 184: 109324.
49. Griffith, S. M., Banowetz, G. M. and Gady, D.
(2013). Chemical characterization of chars developed from thermochemical
treatment of Kentucky bluegrass seed screenings. Chemosphere, 92(10):
1275-1279.
50. Ibrahim, I., Hassan, M. A., Abd-Aziz, S.,
Shirai, Y., Andou, Y., Othman, M. R., Ali, A. A. M. and Zakaria, M. R. (2017).
Reduction of residual pollutants from biologically treated palm oil mill
effluent final discharge by steam activated bioadsorbent from oil palm biomass.
Journal of Cleaner Production, 141: 122-127.
51. Cibati, A., Foereid, B., Bissessur, A. and
Hapca, S. (2017). Assessment of miscanthus x giganteus derived
biochar as copper and zinc adsorbent: study of the effect of pyrolysis
temperature, pH and hydrogen peroxide modification. Journal of Cleaner
Production, 162: 1285-1296.
52. An, H., Liu, Z., Cao, X., Teng, J., Miao, W.,
Liu, J., Li, R. and Li, P. (2017). Mesoporous lignite-coke as an effective
adsorbent for coal gasification wastewater treatment. Environmental Science:
Water Research & Technology, 3(1): 169-174.
53. Gai, H., Guo, K., Xiao, M., Zhang, N., Li, Z.,
Lv, Z. and Song, H. (2018). Ordered mesoporous carbons as highly efficient
absorbent for coal gasification wastewater - a real case study based on the
inner Mongolia autonomous coal gasification wastewater. Chemical Engineering
Journal, 341: 471-482.
54. Xu, L., Wang, J., Zhang, X., Hou, D. and Yu, Y.
(2015). Development of a novel integrated membrane system incorporated with an
activated coke adsorption unit for advanced coal gasification wastewater
treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
484: 99-107.
55. Lamaming, J., Hashim, R., Sulaiman, O., Peng
Leh, C., Sugimoto, T. and Nordin, A. (2015). Cellulose nanocrystals isolated
from oil palm trunk. Carbohydrate Polymers, 127: 202-208.
56. Jahi, N., Ling, S., Othaman, R. and Ramli, S.
(2015). Modification of oil palm plantation wastes as oil adsorbent for palm
oil mill effluent (POME). Malaysian Journal of Analytical Sciences, 19:
31-40.
57. Liu, G., Li, X. and Campos, L. C. (2017). Role
of the functional groups in the adsorption of bisphenol a onto activated
carbon: Thermal modification and mechanism. Journal of Water Supply:
Research and Technology-Aqua, 66(2): 105-115.
58. Sidik, S. M., Jalil, A. A., Triwahyono, S.,
Adam, S. H., Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves
adsorbent with enhanced hydrophobicity for crude oil removal. Chemical
Engineering Journal, 203: 9-18.
59. Zainal, N. Ha., Jalani, N. F., Mamat, R. and
Astimar, A. A. (2017). A review on the development of palm oil mill effluent
(POME) final discharge polishing treatments. Journal of Oil Palm Research,
29(4): 528-540.
60. Bhalla, B., Saini, M. S. and Jha, M. K. (2013).
Effect of Age and Seasonal Variations on Leachate Characteristics of Municipal
Solid Waste Landfill. International Journal of Research in Engineering and
Technology, 2(8): 223-232.
61. Parveen, S., Kaman, D., Ai, I., Tan, W., Lik,
L. and Lim, P. (2016). Palm oil mill effluent treatment using coconut shell ?
based activated carbon: adsorption equilibrium and isotherm. MATEC
Conference ENCON, 2016: 1-6.
62. Majedi, Y., Alhilali, E., al Nehayan, M.,
Rashed, A., Ali, S. S., Al Rawashdeh, N., Thiemann, T. and Soliman, A. (2014).
Treatment of dye-loaded wastewater with activated carbon from date palm leaf
wastes. World Sustainability Forum, 2014: 1-12.
63. Abdulsalam, M., Man, H. C., Yunos, K. F.,
Abidin, Z. Z., Idris, A. I. and Hamzah, M. H. (2020). Augmented yeast-extract
and diary-waste for enhancing bio-decolourization of palm oil mill effluent using
activated sludge. Journal of Water Process Engineering, 36: 1-12.
64. Razali, N. and Kamarulzaman, N. Z. (2020).
Chemical characterizations of biochar from palm oil trunk for palm oil mill
effluent (POME) treatment. Materials Today: Proceedings, 31(1): 191-197.