Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 370 - 383

 

 

 

 

CHEMICAL CHARACTERISATION OF BIOCHAR FROM OIL PALM FROND FOR PALM OIL MILL SECONDARY EFFLUENT TREATMENT

 

Analisis Sifat Kimia Biochar Daripada Pelepah Kelapa Sawit Untuk Rawatan Air Sisa Sekunder Kilang Pemprosesan Kelapa Sawit

 

Nadia Razali and Nurhanim Zulaikha Kamarulzaman*

 

Section of Environmental and Polymer Engineering Technology,

Malaysian Institute of Chemical and Bioengineering Technology (MICET,

Universiti Kuala Limpur, 78000 Alor Gajah, Melaka, Malaysia

 

*Corresponding author:  nurhanim.kamarulzaman@s.unikl.edu.my

 

 

Received: 15 September 2021; Accepted: 3 February 2022; Published: 28 April 2022

 

 

Abstract

The oil palm frond (OPF) biomass contains chemical characteristics, which makes it a potential alternative adsorbent in wastewater treatment applications. In this study, the OPF sample was produced as biochar by using a top-lit updraft (TLUD) gasifier. The maximum temperature of this process was 750 oC and it yielded 20% w/w of biochar. The Brunauer Emmett Teller (BET) surface area for the OPF biochar was 248.08 m2/g with an average pore size of 4.3 nm and categorised as mesoporous adsorbent. The OPF biochar had a high carbon content of more than 70%, which was desirable for the alternative adsorbent. It was discovered that the aromatic ring and aliphatic functional group was detected in the biochar based on the Fourier Transform Infrared (FTIR) analysis which was commonly found in biochar produced at temperatures above 500 oC. Based on the result obtained from the adsorption test, the OPT biochar could provide a maximum removal of 64.65% of COD, with an initial COD of 3960 mg/L. This study has found that the OPF biochar is suitable to be used as an alternative adsorbent for wastewater applications.

 

Keywords:  biochar, oil palm frond, adsorption, palm oil mill effluent

 

Abstrak

Pelepah kelapa sawit (OPF) mempunyai sifat kimia yang berpotensi sebagai bahan penjerap alternatif dalam aplikasi rawatan air sisa. Dalam kajian ini, sampel OPF digunakan sebagai bahan mentah untuk menghasilkan biochar dengan menggunakan gasifier top-lit updraft (TLUD). Suhu maksimum process ini adalah 750 oC dan 20% w/w biochar telah dihasilkan. Luas permukaan Brunauer Emmett Teller (BET) untuk biochar OPF adalah 248.08 m2/g dengan ukuran purata saiz pori 4.3 nm dan diketagorikan sebagai penjerap mesoporos. Biochar OPF mempunyai kandungan karbon yang tinggi melebihi daripada 70%, yang merupakan ciri-ciri yang dikehendaki untuk penjerap alternatif. Berdasarkan analisis spektroskopi inframerah transformasi Fourier (FTIR), kumpulan organik alifatik dan cincin aromatik dikesan didalam bahan ini. Kumpulan organik ini biasanya ditemui dalam biochar yang dihasilkan pada suhu melebihi 500 oC. Berdasarkan hasil kajian yang diperolehi daripada ujian penjerapan, biochar OPT mampu memberikan menyingkirkan 64.65% COD daripada air sisa kilang kelapa sawit yang mempunyai COD awal sebanyak 3650 mg/L. Kajian ini mendapati bahawa biochar OPF wajar digunakan sebagai penjerap altenatif untuk rawatan sisa pepejal.

 

Kata kunci:  biochar, pelepah kelapa sawit, penjerapan, sisa efluen kilang kelapa sawit

 

 

 


Graphical Abstract



 

References

1.      Ghulam Kadir, A. P. (2020). Overview of the malaysian oil palm industry 2020. In Malaysian Palm Oil Board website. Access from https://www.mpob.gov. [Accessed Jun. 14, 2021].

2.      Tan, Z. Y. (2020). Green technology: Time to Tap Biomass. The Edge Markets. https://www.theedgemarkets.com/article/green-technology-time-tap-biomass [Accessed Jun. 14, 2021].

3.      Zwart, R. (2013). Sustainability in the cultivation of oil palm issues and prospects for the industry. Journal of Oil Palm and the Environment, 4(5): 41-62.

4. Malaysian Department of Environment (2009). Environmental quality (industrial effluent) regulations 2009. In Environmental Quality Act 1974 (pp. 4010-4059). Access from https://www.doe.gov.my/ portalv1/wpcontent/uploads/2015/01/Environmental_Quality_Industrial_Effluent_Regulations_2009_-_P.U.A_ 434-2009.pdf.

5.     Zainuri, N. Z., Hairom, N. H. H., Sidik, D. A. B., Desa, A. L., Misdan, N., Yusof, N. and Mohammad, A. W. (2018). Palm oil mill secondary effluent (POMSE) treatment via photocatalysis process in presence of ZnO-PEG nanoparticles. Journal of Water Process Engineering, 26:10-16.

6.   Zahrim, A. Y., Nasimah, A. and Hilal, N. (2014). Pollutants analysis during conventional palm oil mill effluent (POME) ponding system and decolourisation of anaerobically treated POME via calcium lactate-polyacrylamide. Journal of Water Process Engineering, 2014: 159-165.

7.      Ngeno, E. C., Orata, F., Baraza, L. D., Shikuku, V. O. and Kimosop, S. J. (2016). Adsorption of caffeine and ciprofloxacin onto pyrolitically derived water hyacinth biochar: isothermal, kinetic and thermodynamic studies. Journal of Chemistry and Chemical Engineering, 10(4): 185-194.

8.      Sia, Y. Y., Tan, I. A. W. and Abdullah, M. O. (2017). Adsorption of colour, TSS and COD from palm oil mill effluent (POME) using acid-washed coconut shell activated carbon: Kinetic and mechanism studies. MATEC Web of Conferences, 87:1-7.

9.      Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S. and Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective. Renewable and Sustainable Energy Reviews, 26: 717-726.

10.   Mukherjee, I. and Sovacool, B. K. (2014). Palm oil-based biofuels and sustainability in Southeast Asia: A review of Indonesia, Malaysia, And Thailand. Renewable and Sustainable Energy Reviews, 37: 1-12.

11.   Umar, M. S., Jennings, P. and Urmee, T. (2013). Strengthening the palm oil biomass renewable energy industry in Malaysia. Renewable Energy, 60; 107-115.

12.   Hansen, V., Muller-Stover, D., Ahrenfeldt, J., Holm, J. K., Henriksen, U. B. and Hauggaard-Nielsen, H. (2015). Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass and Bioenergy, 72: 300-308.

13.   Shen, Y. (2015). Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renewable and Sustainable Energy Reviews, 43: 281-295.

14.   Hosseini, S. E., Wahid, M. A. and Ganjehkaviri, A. (2015). An overview of renewable hydrogen production from thermochemical process of oil palm solid waste in Malaysia. Energy Conversion and Management, 94: 415-429.

15.   Anukam, A., Mamphweli, S., Reddy, P., Meyer, E. and Okoh, O. (2016). Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews, 66: 775-801.

16.   Couto, N., Rouboa, A., Silva, V., Monteiro, E. and Bouziane, K. (2013). Influence of the biomass gasification processes on the final composition of syngas. Energy Procedia, 36:596-606.

17.   Huggins, T. M., Haeger, A., Biffinger, J. C. and Ren, Z. J. (2016). Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 94: 225-232

18.   Kearns, J., Anh, M. T. L., Reents, N. W., Shimabuku, K. K., Mahoney, R. B., Summers, R. S. and Knappe, D. R. U. (2014). Trace organic contaminant removal from drinking water using local char. 37th WEDC International Conference, 2014: pp. 1-6.

19.   Kaetzl, K., Lubken, M., Uzun, G., Gehring, T., Nettmann, E., Stenchly, K. and Wichern, M. (2019). On-farm wastewater treatment using biochar from local agro residues reduces pathogens from irrigation water for safer food production in developing countries. Science of the Total Environment, 682: 601-610.

20.   Thompson, K. A., Shimabuku, K. K., Kearns, J. P., Knappe, D. R. U., Summers, R. S. and Cook, S. M. (2016). Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environmental Science & Technology, 50(20): 11253-11262.

21.   Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., Tan, X. and Wu, S. (2015). Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). Journal of Environmental Management, 153: 68-73.

22.   Han, R., Wang, Y., Zhoa, X., Wang, Y., Xie, F., Cheng, J. and Tang, Mi. (2009). Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: Experiments and prediction of breakthrough curves. Desalination, 245(1-3): 284-297.

23.   Enaime, G., Bacaoui, A., Yaacoubi, A. and Lubken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Applied Sciences, 10: 1-29.

24.   Wang, X., Guo, Z., Hu, Z. and Zhang, J. (2020). Recent advances in biochar application for water and wastewater treatment: A review. PeerJ, 8: 1-34.

25.   Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H. and Khanal, S. K. (2017). Environmental application of biochar: Current status and perspectives. Bioresource Technology, 246: 110-122.

26.   Nsamba, H. K., Hale, S. E., Cornelissen, G. and Bachmann, R. T. (2014). Improved gasification of rice husks for optimized biochar production in a top lit updraft gasifier. Journal of Sustainable Bioenergy Systems, 4: 225-242.

27.   James, R. A. M., Yuan, W. and Boyette, M. D. (2016). The effect of biomass physical properties on top-lit updraft gasification of woodchips. Energies, 9(4): 1-13.

28.   You, S., Ok, Y. S., Chen, S. S., Tsang, D. C. W., Kwon, E. E., Lee, J. and Wang, C. H. (2017). A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresource Technology, 246: 242-253.

29.   Mohan, D., Sarswat, A., Sik, Y. and Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - a critical review. Bioresource Technology, 160: 191-202.

30.   Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Sik Ok, Y. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99: 19-33.

31.   Rahman, A. A., Abdullah, N. and Sulaiman, F. (2014). Temperature effect on the characterization of pyrolysis products from oil palm fronds. Advances in Energy Engineering, 2: 14-21.

32.   Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H. and Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240: 574-578.

33.   Tran, H. and Yuan, C. (2016). Effect of pyrolyisis temperatures and times in adsorption of cadmium onto orange peel derived biochar. Waste Management & Research, 34(2): 129-138.

34.   Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X. and Gu, Y. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125: 70-85.

35.   Mojiri, A., Ziyang, L., Tajuddin, R. M., Farraji, H. and Alifar, N. (2016). Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/Zeolite constructed wetland system. Journal of Environmental Management, 166: 124-130.

36.   Lam, S. S., Liew, R. K., Cheng, C. K., Rasit, N., Ooi, C. K., Ma, N. L., Ng, J. H., Lam, W. H., Chong, C. T. and Chase, H. A. (2018). Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. Journal of Environmental Management, 213: 400-408.

37.   Angın, D. (2012). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128: 593-597.

38.   Usman, A. R. A., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., Elfaki, J., Abdulazeem, S. S., & Al-Wabel, M. I. (2015). Biochar Production from Date Palm Waste: Charring Temperature Induced Changes in Composition and Surface Chemistry. Journal of Analytical and Applied Pyrolysis, 115: 392-400.

39.   Mahmood, W. M. F. W., Ariffin, M. A., Harun, Z., Ishak, N. A. I., Ghani, J. A. and Rahman, M. N. A. (2014). Characterisation and potential use of biochar from gasified oil palm wastes. Journal of Engineering Science and Technology, 45-54.

40.   Suarez-Hernandez, L., Ardila-A, A. N. and Barrera-Zapata, R. (2017). Morphological And physicochemical characterization of biochar produced by gasification of selected forestry species. Revista Facultad de Ingenier?a, 26(46): 123-130.

41.   Feng, D., Zhao, Y., Zhang, Y., Sun, S. and Gao, J. (2018). Steam gasification of sawdust biochar influenced by chemical speciation of alkali and alkaline earth metallic species. Energies, 11(1): 205.

42.   Shen, Y. (2015). Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renewable and Sustainable Energy Reviews, 43: 281-295.

43.   Park, J., Hung, I., Gan, Z., Rojas, O. J., Lim, K. H. and Park, S. (2013). Activated carbon from biochar: influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149: 383-389.

44.   Liew, R. K., Nam, W. L., Chong, M. Y., Phang, X. Y., Su, M. H., Yek, P. N. Y., Ma, N. L., Cheng, C. K., Chong, C. T. and Lam, S. S. (2017). Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Safety and Environmental Protection, 2017: 1-13.

45.   Domingues, R. R., Trugilho, P. F., Silva, C. A., de Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M. and Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, 12(5): 1-19.

46.   Klasson, K. T. (2017). Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass and Bioenergy, 96: 50-58.

47.   Wijitkosum, S. and Jiwnok, P. (2019). Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Applied Sciences, 9(19): 3980.

48.   Wei, L., Huang, Y., Huang, L., Li, Y., Huang, Q., Xu, G., Muller, K., Wang, H., Ok, Y. S. and Liu, Z. (2020). The ratio of H/C is a useful parameter to predict adsorption of the herbicide metolachlor to biochars. Environmental Research, 184: 109324.

49.   Griffith, S. M., Banowetz, G. M. and Gady, D. (2013). Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings. Chemosphere, 92(10): 1275-1279.

50.   Ibrahim, I., Hassan, M. A., Abd-Aziz, S., Shirai, Y., Andou, Y., Othman, M. R., Ali, A. A. M. and Zakaria, M. R. (2017). Reduction of residual pollutants from biologically treated palm oil mill effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal of Cleaner Production, 141: 122-127.

51.   Cibati, A., Foereid, B., Bissessur, A. and Hapca, S. (2017). Assessment of miscanthus x giganteus derived biochar as copper and zinc adsorbent: study of the effect of pyrolysis temperature, pH and hydrogen peroxide modification. Journal of Cleaner Production, 162: 1285-1296.

52.   An, H., Liu, Z., Cao, X., Teng, J., Miao, W., Liu, J., Li, R. and Li, P. (2017). Mesoporous lignite-coke as an effective adsorbent for coal gasification wastewater treatment. Environmental Science: Water Research & Technology, 3(1): 169-174.

53.   Gai, H., Guo, K., Xiao, M., Zhang, N., Li, Z., Lv, Z. and Song, H. (2018). Ordered mesoporous carbons as highly efficient absorbent for coal gasification wastewater - a real case study based on the inner Mongolia autonomous coal gasification wastewater. Chemical Engineering Journal, 341: 471-482.

54.   Xu, L., Wang, J., Zhang, X., Hou, D. and Yu, Y. (2015). Development of a novel integrated membrane system incorporated with an activated coke adsorption unit for advanced coal gasification wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 484: 99-107.

55.   Lamaming, J., Hashim, R., Sulaiman, O., Peng Leh, C., Sugimoto, T. and Nordin, A. (2015). Cellulose nanocrystals isolated from oil palm trunk. Carbohydrate Polymers, 127: 202-208.

56.   Jahi, N., Ling, S., Othaman, R. and Ramli, S. (2015). Modification of oil palm plantation wastes as oil adsorbent for palm oil mill effluent (POME). Malaysian Journal of Analytical Sciences, 19: 31-40.

57.   Liu, G., Li, X. and Campos, L. C. (2017). Role of the functional groups in the adsorption of bisphenol a onto activated carbon: Thermal modification and mechanism. Journal of Water Supply: Research and Technology-Aqua, 66(2): 105-115.

58.   Sidik, S. M., Jalil, A. A., Triwahyono, S., Adam, S. H., Satar, M. A. H. and Hameed, B. H. (2012). Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chemical Engineering Journal, 203: 9-18.

59.   Zainal, N. Ha., Jalani, N. F., Mamat, R. and Astimar, A. A. (2017). A review on the development of palm oil mill effluent (POME) final discharge polishing treatments. Journal of Oil Palm Research, 29(4): 528-540.

60.   Bhalla, B., Saini, M. S. and Jha, M. K. (2013). Effect of Age and Seasonal Variations on Leachate Characteristics of Municipal Solid Waste Landfill. International Journal of Research in Engineering and Technology, 2(8): 223-232.

61.   Parveen, S., Kaman, D., Ai, I., Tan, W., Lik, L. and Lim, P. (2016). Palm oil mill effluent treatment using coconut shell ? based activated carbon: adsorption equilibrium and isotherm. MATEC Conference ENCON, 2016: 1-6.

62.   Majedi, Y., Alhilali, E., al Nehayan, M., Rashed, A., Ali, S. S., Al Rawashdeh, N., Thiemann, T. and Soliman, A. (2014). Treatment of dye-loaded wastewater with activated carbon from date palm leaf wastes. World Sustainability Forum, 2014: 1-12.

63.   Abdulsalam, M., Man, H. C., Yunos, K. F., Abidin, Z. Z., Idris, A. I. and Hamzah, M. H. (2020). Augmented yeast-extract and diary-waste for enhancing bio-decolourization of palm oil mill effluent using activated sludge. Journal of Water Process Engineering, 36: 1-12.

64.   Razali, N. and Kamarulzaman, N. Z. (2020). Chemical characterizations of biochar from palm oil trunk for palm oil mill effluent (POME) treatment. Materials Today: Proceedings, 31(1): 191-197.