Malaysian Journal of Analytical Sciences Vol 26 No 2 (2022): 360 - 369

 

 

 

 

DEVELOPMENT AND OPTIMIZATION OF A RAPID RESOLUTION LIQUID CHROMATOGRAPHY METHOD FOR CYANIDIN-3-O-GLUCOSIDE IN RAT PLASMA

 

(Pembangunan dan Pengoptimuman Kaedah Kromatografi Cecair Resolusi Pantas untuk Sianidin-3-O-Glukosida Klorida di dalam Plasma Tikus)

 

Nadiratul Asyikin Sauji1, Wan Amir Nizam Wan Ahmad1, Liza Nordin2, Ruzilawati Abu Bakar3*

 

1Biomedicine Program, School of Health Sciences

2Department of Physiology, School of Medical Sciences

3Department of Pharmacology, School of Medical Sciences

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

 

*Corresponding authors:  ruzila@usm.my

 

 

Received: 16 January 2022; Accepted: 15 March 2022; Published:  28 April 2022

 

 

Abstract

The growing interest in anthocyanins in plants has brought about the importance of investigating their pharmacological properties. Sensitive and specific analytical methods are required to accurately analyze the anthocyanins present in samples. One of the anthocyanins found in plants is cyanidin-3-O-glucoside. The objective of this study was to develop and optimize a rapid resolution liquid chromatography (RRLC) method for cyanidin-3-O-glucoside determination in rat plasma. Spectrophotometric analysis was performed to determine the best ultraviolet (UV) absorbance wavelength. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) methods were compared to determine the best extraction method for cyanidin-3-O-glucoside in rat plasma samples. The effects of varying the type and proportion of organic solvents, the type and concentration of buffer solutions, flow rates, column temperatures, and UV wavelengths were examined. The optimized chromatographic method for RRLC analysis of cyanidin-3-O-glucoside was a mobile phase composition of 0.1% trifluoroacetic acid aqueous solution and acetonitrile in a ratio of 81:19, respectively, with a 0.5 mL/min flow rate, at 30°C column temperature and 525 nm detection wavelength. SPE was our choice of final extraction method. Our findings revealed that the optimized RRLC method can be used to determine cyanidin-3-O-glucoside in rat plasma.

 

Keywords:  rapid resolution liquid chromatography, method development, cyanidin-3-o-glucoside, rat plasma

 

Abstrak

Kajian antosianin dalam rosel yang semakin meluas mengetengahkan kepentingan analisis sebatian tersebut untuk mengkaji ciri-ciri farmakologinya. Kaedah analisis yang sensitif dan spesifik diperlukan untuk menganalisis antosianin yang terdapat dalam sampel dengan tepat. Salah satu antosianin yang terdapat dalam tumbuhan ialah sianidin-3-O-glukosida. Objektif kajian ini adalah untuk membangunkan dan mengoptimumkan kaedah kromatografi cecair resolusi pantas (RRLC) untuk sianidin-3-O-glukosida di dalam plasma tikus. Analisis spektrofotometri dilakukan untuk memilih penyerapan ultraungu yang terbaik. Kaedah pengekstrakan cecair-cecair (LLE) dan pengekstrakan fasa pepejal (SPE) juga dijalankan untuk menilai kaedah pengekstrakan terbaik bagi antosianin daripada sampel plasma tikus. Kesan mempelbagaikan jenis dan peratusan pelarut organik, jenis dan kepekatan larutan penimbal, kadar aliran fasa bergerak, suhu turus dan panjang gelombang pengesan ultraungu telah diuji. Kaedah pengoptimuman kromatografi menunjukkan komposisi fasa bergerak bagi larutan akueus asid trifluoroasettik 0.1% dan asetonitril dalam nisbah 81:19, dengan kadar aliran 0.5 mL/min, pada suhu turus 30°C dan panjang gelombang pengesanan 525 nm adalah sesuai untuk analisis sianidin-3-O-glukosida. Kaedah SPE dipilih sebagai kaedah pengekstrakan terbaik kerana ia menghasilkan puncak kromatogram yang lebih baik berbanding kaedah LLE. Kesimpulannya, kaedah RRLC yang dibangunkan dalam kajian ini boleh digunakan untuk menentukan sianidin-3-O-glukosida dalam plasma tikus.

 

Kata kunci:  kromatografi cecair resolusi pantas, pembangunan kaedah, sianidin-3-O-glukosida, plasma tikus

 

 

 


Graphical Abstract

 

References

1.      Wallace, T. C. and Giusti, M. M. (2015). Anthocyanins. Advances in Nutrition, 6(5): 619-622.

2.      Passeri, V., Koes, R. and Quattrocchio, F. (2016). New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Front Plant Science, 7: 1-9.

3.      Riaz, G. and Chopra, R. (2018). A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomedicine & Pharmacotherapy, 102: 575-586.

4.      Rubinskiene, M., Jasutiene, I., Venskutonis, P. R. and Viskelis, P. (2005). HPLC determination of the composition and stability of blackcurrant anthocyanins. Journal of Chromatographic Science, 43(9): 478-482.

5.      Hapsari, B. W., Manikharda and Setyaningsih, W. (2021). Methodologies in the analysis of phenolic compounds in roselle (Hibiscus sabdariffa L.): Composition, biological activity, and beneficial effects on human health. Horticulturae, 7(2): 1-36.

6.    Angelika, G.-H., Frank, M., & Gotenfels, C. (2009). Agilent 1200 series rapid resolution LC and rapid resolution LC/MS optimization guide. Access from https://www.agilent.com/cs/library/ usermanuals/public/1200SeriesRRLC-Optimize Guide_ebook.pdf. [Access online 11 July 2021].

7.      Banaszewski, K., Park, E., Edirisinghe, I., Cappozzo, J. C. and Burton-Freeman, B. M. (2013). A pilot study to investigate bioavailability of strawberry anthocyanins and characterize postprandial plasma polyphenols absorption patterns by Q-TOF LC/MS in humans. Journal of Berry Research, 3(2): 113-126.

8.      Harada, K., Kano, M., Takayanagi, T., Yamakawa, O. and Ishikawa, F. (2004). Absorption of acylated anthocyanins in rats and humans after ingesting an extract of Ipomoea batatas purple sweet potato tuber. Bioscience, Biotechnology and Biochemistry, 68(7): 1500-1507.

9.      Saha, S., Singh, J., Paul, A., Sarkar, R., Khan, Z. and Banerjee, K. (2021). Anthocyanin profiling using UV-Vis spectroscopy and liquid chromatography mass spectrometry. Journal of AOAC International, 103 (1): 23-39.

10.   Dwilistiani, D., Darwis, D. and Santoni, A. (2015). Characterization of cyanidin 3-(6-acetylglucoside)-5-(3”-coumaryl-6”- malonylglucoside) compound from cinnamon bud leaves (Cinnamomum burmanni (Ness & T. Ness) Blume) by HPLC-DAD-ESI-MS. Journal of Chemical and Pharmaceutical Research, 7 (47): 519-523.

11.   Nuryanti, S., Matsjeh, S., Anwar, C. and Raharjo, T. J. (2012). Isolation anthocyanin from roselle petals (Hibiscus sabdariffa L) and the effect of light on the stability. Indonesian Journal of Chemistry, 12(2): 167-171.

12.   Prior, R. L. and Wu, X. (2012). Analysis methods of anthocyanins. In Z. Xu & L. R. Howard (Eds.), Analysis of Antioxidant-Rich Phytochemicals, John Wiley & Sons, New Jersey: pp. 149-180.

13.   Durst, R. W. and Wrolstad, R. E. (2005). Separation and characterization of anthocyanins by HPLC. In Current Protocols in Food Analytical Chemistry, John Wiley & Sons, New Jersey: pp. 33-45.

14.   Deineka, V. I., Deineka, L. A. and Saenko, I. I. (2015). Regularities of anthocyanins retention in RP HPLC for “water–acetonitrile–phosphoric acid” mobile phases. Journal of Analytical Methods in Chemistry, 2015 (2015): 1-6.

15.   Guzzetta, A. (2001). Reverse phase HPLC basics for LC/MS. Access from http:// www.ionsource.com/tutorial/chromatography/

rphplc.htm. [Access online 18 July 2021].

16.   Ukić, Š., Rogošić, M., Novak, M., Šimović, E., Tišler, V. and Bolanča, T. (2013). Optimization of IC separation based on isocratic-to-gradient retention modeling in combination with sequential searching or evolutionary algorithm. Journal of Analytical Methods in Chemistry, 2013 (1): 1-11.

17.   Gilar, M., Jaworski, A. and McDonald, T. S. (2014). Solvent selectivity and strength in reversed-phase liquid chromatography separation of peptides. Journal of Chromatography A, 1337(1): 140-146.

18.   Chua, Y. A., Abdullah, W. Z., Yusof, Z. and Gan, S. H. (2019). Validation of HPLC and liquid-liquid extraction methods for warfarin detection in human plasma and its application to a pharmacokinetics study. ASM Science Journal, 12(2019): 1-10.

19.   Yabré, M., Ferey, L., Somé, I. T. and Gaudin, K. (2018). Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(5): 1065-1089.

20.   Afsah-Hejri, L., Jinap, S., Arzandeh, S. and Mirhosseini, H. (2011). Optimization of HPLC conditions for quantitative analysis of aflatoxins in contaminated peanut. Food Control, 22(3–4): 381-388.

21.   Dolan, J. W. (2002). The importance of temperature. LC GC Europe, 20(6): 524-530.

22.   Chua, Y. A., Abdullah, W. Z. and Gan, S. H. (2012). Development of a high-performance liquid chromatography method for warfarin detection in human plasma. Turkish Journal of Medical Sciences, 42 (5): 930-941.

23.   Liu, Y., Liu, Y., Tao, C., Liu, M., Pan, Y. and Lv, Z. (2018). Effect of temperature and pH on stability of anthocyanin obtained from blueberry. Journal of Food Measurement and Characterization, 12(3): 1744- 1753.

24.   Martín, J., Navas, M. J., Jiménez-Moreno, A. M. and Asuero, A. G. (2017). Anthocyanin pigments: Importance, sample preparation and extraction. In M. Soto-Hernandez, M. Palma-Tenango and M. R. Garcia-Mateos (Eds.), Phenolic Compounds - Natural Sources, Importance and Applications, Intech Open, London: pp. 117-152.

25.   Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A. and Fernández-Gutiérrez, A. (2010). Phenolic-Compound-extraction systems for fruit and vegetable samples. Molecules, 15(12): 8813-8826.

26.   Crawford Scientific. (2017). Peak tailing in HPLC. Access from https://www.crawfordscientific.com/ chromatography-blog/post/peak-tailing-in-hplc. [Access online 19 July 2021].

27.   Denoulet, B. (2020). The perfect peak shape: Five solutions to peak tailing problems. Access from https://www.barts-blog.net/the-perfect-peak-shape-five-solutions-to-peak-tailing-problems/.[Access online 19 July 2021].